
1© 2021 The MathWorks, Inc.

Introduction to C/C++ code generation from

MATLAB code with MATLAB Coder

Generating readable and portable C/C++ code from your MATLAB algorithms

Ryan Livingston

2

▪ Motivation
– Why translate MATLAB to C/C++?

– Challenges of manual translation

▪ Using MATLAB Coder
– Three-step workflow for generating code

▪ Use cases
– Integrate algorithms using source code/libraries

– Accelerate through MEX

– Prototype by generating EXE

▪ Conclusion
– Integration with Simulink, Embedded Coder, and GPU Coder

– Other deployment solutions

Agenda

4

Implement C/C++ code on processors or hand off to

software engineers

Integrate MATLAB algorithms with existing C/C++

environment using source code and static/dynamic

libraries

Prototype MATLAB algorithms on desktops as

standalone executables

Accelerate user-written MATLAB algorithms

.exe

.lib

.dll

.c/cpp

MEX

Why Engineers Translate MATLAB to C/C++ Today

5

.c/cpp

MATLAB

Runtime

MATLAB

GPU

Coder

MATLAB

Coder

.cu

Deploying MATLAB Algorithms

MATLAB

Compiler SDK

MATLAB

Compiler

6

Re-code in

C/C++

Algorithm Design

in MATLAB

MEX

.lib

.dll

.exe

.c/cpp

Challenges with Manual Translation
from MATLAB to C/C++

▪ Separate functional and implementation specification
– Leads to multiple implementations that are inconsistent

– Hard to modify requirements during development

– Difficult to keep reference MATLAB code and C/C++ code in sync

▪ Manual coding errors

▪ Time-consuming and expensive process

iterate

7

MEX

.lib

.dll

.exe

.c/cpp

Algorithm Design and

Code Generation in

MATLAB

With MATLAB Coder, design engineers can:

• Maintain one design in MATLAB

• Design faster and get to C/C++ quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

verify /accelerate

ite
ra
te

Automatic Translation of MATLAB to C/C++

8

Simple Example
c = a*b

9

Simple Example
c = a*b

10

Command-line Code Generation

11

MATLAB Class to C++ Class Example

12

▪ Motivation
– Why translate MATLAB to C/C++?

– Challenges of manual translation

▪ Using MATLAB Coder
– Three-step workflow for generating code

▪ Use cases
– Integrate algorithms using source code/libraries

– Accelerate through MEX

– Prototype by generating EXE

▪ Conclusion
– Integration with Simulink, Embedded Coder, and GPU Coder

– Other deployment solutions

Agenda

13

Using MATLAB Coder: Three-Step Workflow

Prepare your MATLAB algorithm for code generation
▪ Make implementation choices

▪ Use supported language features

Test if your MATLAB code is ready for code generation
▪ Validate that MATLAB program generates code

▪ Accelerate execution of user-written algorithm

Generate source code or MEX for final use
▪ Iterate your MATLAB code to optimize

▪ Implement as source, executable, or library

14

Implementation Considerations

double foo(double b, double c)

{

return b*c;

}

void foo(const double b[15],

const double c[30], double a[18])

{

int i0, i1, i2;

for (i0 = 0; i0 < 3; i0++) {

for (i1 = 0; i1 < 6; i1++) {

a[i0 + 3 * i1] = 0.0;

for (i2 = 0; i2 < 5; i2++) {

a[i0 + 3 * i1] += b[i0 + 3 * i2] * c[i2 + 5 * i1];

}

}

}

}

function a= foo(b,c)

a = b * c;

Element by element multiply

Dot product

Matrix multiply

Element by element multiply

Dot product

Matrix multiply

Scalar multiply

Dot product

Matrix multiply

logical

integer

real

complex

…

C

15

Implementation Considerations

▪ Polymorphism

▪ Memory allocation

▪ Processing matrices and arrays

▪ Fixed-point data types

7 Lines of MATLAB

105 Lines of C

16

Newton/Raphson Example

17

Java

visualization

graphics

nested functions

sparse

variable-sized data

arrays
struct

numeric

fixed-point

functions

complex

System objects

global

persistent

malloc

MATLAB classes

Growing MATLAB Language Support for Code Generation

cell arrays

deep learning networks

18

3250 Functions & 37 Toolboxes Supported

▪ 5G Toolbox

▪ Aerospace Toolbox

▪ Antenna Toolbox

▪ Audio System Toolbox

▪ Automated Driving Toolbox

▪ Communications Toolbox

▪ Computer Vision Toolbox

▪ Control System Toolbox

▪ Deep Learning Toolbox

▪ DSP System Toolbox

▪ Fixed-Point Designer

▪ Fuzzy Logic Toolbox

▪ Image Acquisition Toolbox

▪ Image Processing Toolbox

▪ Instrumental Control Toolbox

▪ Lidar Toolbox

▪ Mapping Toolbox

▪ Mixed-Signal Blockset

▪ Model Predictive Control Toolbox

▪ Navigation Toolbox

▪ Optimization Toolbox

▪ Phased Array System Toolbox

▪ Predictive Maintenance Toolbox

▪ Radar Toolbox

▪ Reinforcement Learning Toolbox

▪ Robotics System Toolbox

▪ ROS Toolbox

▪ Satellite Communications Toolbox

▪ Sensor Fusion and Tracking Toolbox

▪ SerDes Toolbox

▪ Signal Processing Toolbox

▪ Stats & Machine Learning Toolbox

▪ System Identification Toolbox

▪ UAV Toolbox

▪ Vision HDL Toolbox

▪ Wavelet Toolbox

▪ WLAN System Toolbox

3250

19

▪ Motivation
– Why translate MATLAB to C/C++?

– Challenges of manual translation

▪ Using MATLAB Coder
– Three-step workflow for generating code

▪ Use cases
– Integrate algorithms using source code/libraries

– Accelerate through MEX

– Prototype by generating EXE

▪ Conclusion
– Integration with Simulink, Embedded Coder, and GPU Coder

– Other deployment solutions

Agenda

20

.c/cpp

.exe

MEX

MATLAB Coder Use Cases

.lib

.dll

21

Integrate Generated Code with Other Systems

f(x)

MATLAB

Function

Machine/Deep

Learning

Model

MATLAB Coder

CUDA

C/C++

VHDL/Verilog

Structured text

Docker

Python / C# / …

Microservice

Web services

22

Building a Container from Generated Code

f(x)

MATLAB

Function

MATLAB Coder

.lib

.dll

.cpp

Driver

Communication

main.cpp (handwritten)

Dockerfile (handwritten)

FROM ubuntu:18.04
LABEL Name=mlcdockerdemo Version=0.0.1
RUN apt-get -y update
WORKDIR /workdir
COPY ./generatedApplication .
CMD ["sh", "-c", "./generatedApplication"]

23

Example Python Bindings
function y = timestwo(x)
y = 2*x;

coder-swig on github:

https://github.com/mathworks/coder-

swig

def main():
"Main function to test timestwo generated code"
from timestwoPython import timestwo

Call initialize function to set up state
print "Calling initialize"
timestwo.timestwo_initialize()
input = 3.0;
print "Input = {0:g}".format(input)

#Call entry-point
result = timestwo.timestwo(input)

print "Result = {0:g}".format(result)

Call terminate function to perform clean up
print "Calling terminate"
timestwo.timestwo_terminate()

if __name__ == "__main__":
main()

https://github.com/mathworks/coder-swig

25

Examples of MATLAB Coder Usage

Baker Hughes

Qualcomm

dorsaVi

Idneo Delphi

Respiri

26

Deep Learning on Raspberry Pi Example

27

Deep Learning on Raspberry Pi Example

28

Acceleration Strategies

▪ Better algorithms

Matrix inversion vs. QR or SVD

– Different approaches to solving the same problem

▪ More efficient implementation

Hand-coded vs. optimized library (BLAS and LAPACK)

– Different optimization of the same algorithm

▪ More computational resources

Single-threaded vs. multithreaded (multithreaded BLAS)

– Leveraging additional processors, cores, GPUs, FPGAs, etc.

29

Accelerating Algorithm Execution

System

objects

MATLAB to

C/C++

User’s code

Custom

code using MEX
Optimize

MATLAB code

Parallel

computing

30

Acceleration Using MEX

▪ Speed-up factor will vary

▪ When you may see a speedup:

– Often for communications and signal processing

– Always for fixed point

– Likely for loops with states or when vectorization isn’t possible

▪ When you may not see a speedup:

– MATLAB implicitly multithreads computation.

– Built-functions call IPP or BLAS libraries.

31

▪ Motivation
– Why translate MATLAB to C/C++?

– Challenges of manual translation

▪ Using MATLAB Coder
– Three-step workflow for generating code

▪ Use cases
– Integrate algorithms using source code/libraries

– Accelerate through MEX

– Prototype by generating EXE

▪ Conclusion
– Integration with Simulink, Embedded Coder, and GPU Coder

– Other deployment solutions

Agenda

32

Working with Embedded Coder

Advanced support for MATLAB

Coder, including:

▪ Speed & Memory

▪ Hardware-specific optimization

▪ Code appearance

▪ Bidirectional traceability

▪ Software/Processor-in-the-loop

verification

▪ Execution profiling

33

Working with Simulink and Embedded Coder

MATLAB Function block in Simulink

35

Working with GPU Coder

Generate CUDA for NVIDIA GPUs

▪ Deploy deep learning

applications, include pre- and

post-processing

▪ Create CUDA kernels from

MATLAB algorithms for

acceleration on GPUs

▪ Automated deployment to NVIDIA

GPUs, including Jetson/DRIVE
NVIDIA

36

T
e

s
t a

n
d

 V
e

rific
a

tio
n

Implementation

Research and Design

▪ Explore and discover

▪ Gain insight into problem

▪ Evaluate options, tradeoffs

Test

Design

Elaborate

Other Desktop Deployment Options

Requirements

Test

Design

Elaborate.c, .cpp

.exe

.dll

Desktop

Structured Text

VHDL/Verilog

C/C++

Embedded

.exe

.dll

37

Other Deployment Options

MATLAB Compiler for sharing MATLAB programs

without integration programming

MATLAB Web App Server provides feature set to

publish MATLAB apps and Simulink simulations

created using App Designer as interactive web apps

MATLAB

C/C++ Java .NET

MATLAB

Compiler

MATLAB
Web App

Server

Standalone
Application

Excel
Add-in

Hadoop

/ Spark

MATLAB

Compiler SDK

Python
Web
App

MATLAB
Production

Server

MATLAB Compiler SDK provides

implementation and platform flexibility for

software developers

MATLAB Production Server provides the

most efficient development path for secure

and scalable web and enterprise

applications

38

Choosing the Right Deployment Solution

.c/cpp

MATLAB Coder
MATLAB Compiler

MATLAB Compiler SDK

MATLAB

Runtime

Output
Portable and readable

C/C++ source code

Executable or software

component/shared library

Main Use Case

Deploy MATLAB code as

portable C/C++ code on

embedded platforms or

desktop

Deploy MATLAB programs as

standalone applications on

desktop or

production servers

MATLAB language support Subset Full

Supported toolboxes Some toolboxes Most toolboxes

Production Embedded Coder MATLAB Production Server

Graphics Support None Full

Library Dependency None MATLAB Runtime

39

More Information

▪ To learn more, visit the product page:

mathworks.com/products/matlab-coder

▪ To request a trial license:

– Talk to your MathWorks account manager to request a trial license and set up a guided

evaluation with an application engineer

http://www.mathworks.com/products/matlab-coder

