DATA MINING PER IL MARKETING (63 ore)

Marco Riani

mriani@unipr.it

Sito web del corso

http://www.riani.it/DMM

$$F = \frac{(r - R\hat{\beta})'[R(X'X)^{-1}R']^{-1}(r - R\hat{\beta})/q}{e'e/(n - k)}$$

Casi particolari

$$H_0: \beta_i = 0.$$

$$R\hat{\beta} - r = \hat{\beta}_i$$

$$R(X'X)^{-1}R'$$

individua unicamente l'i-esimo elemento S^{ii} sulla diagonale principale della matrice $(X'X)^{-1}$. Il rapporto F diventa

$$F = \frac{\hat{\beta}_i^2}{S^{ii}s^2} \sim F(1, n-k)$$

Relazione con il test t per testare $\beta_i=0$

L'equazione

$$F = \frac{\hat{\beta}_i^2}{S^{ii}s^2} \sim F(1, n - k)$$

• non è altro che il quadrato del test t

Relazione con il test t

$$T^{2}(n-k) = \left(\frac{N(0,1)}{\sqrt{\frac{\chi^{2}(n-k)}{n-k}}}\right)^{2} = \frac{\chi^{2}(1)/1}{\chi^{2}(n-k)/(n-k)} = F(1,n-k).$$

Set di variabili esplicative non rilevanti

Si può dimostrare, infine, che qualora l'ipotesi nulla sia della forma

$$\beta_{k-q+1} = \beta_{k-q+2} = \dots = \beta_k = 0$$

ossia che gli ultimi q coefficienti siano pari a 0 nell'universo, l'equazione che definisce il test può essere scritta come segue:

$$F = \frac{(e'_r e_r - e'e)/q}{e'e/(n-k)} \sim F(q, n-k)$$

Procedura

- 1. regredire y sulle variabili esplicative X_1, \ldots, X_{k-q} che non rientrano nel sottoinsieme da testare e calcolare la devianza residua $e'_r e_r$
- 2. effettuare la regressione completa e calcolare la devianza residua e'e. La differenza $e'_re_r e'e$ misura la diminuzione nella devianza residua dovuta all'inclusione dell'insieme $X_{k-q+1}, X_{k-q+2}, \dots X_k$ nella regressione;
- 3. La quantità $(e'_r e_r e'e)/r$ viene confrontata con la quantità e'e/(n-k). Se il valore del test F che ne deriva supera un prefissato valore critico si rifiuta l'ipotesi che le variabili $X_{k-q+1}, X_{k-q+2}, \ldots, X_k$ non abbiano influenza sulla y.

$$H_0: \beta_2 = \beta_3 = \ldots = \beta_k = 0$$

ossia

$$H_0: R^2 = 0$$

contro una alternativa

 $H_1: \mathbb{R}^2 > 0$, cioè almeno uno dei coefficienti significativamente diverso da 0.

$$F = \frac{(e'_r e_r - e'e)/q}{e'e/(n-k)} \sim F(q, n-k)$$

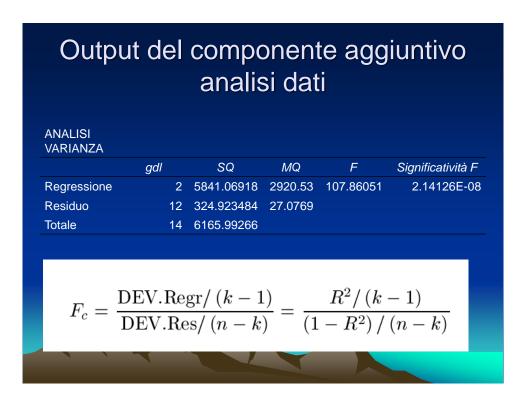
In questo esempio cos'è e',e,? cos'è e'e?

$$F = \frac{(e'_r e_r - e'e)/q}{e'e/(n-k)} \sim F(q, n-k)$$

- e'_re_r= Devianza totale
- e'e = Devianza residua

$$F_c = \frac{\text{DEV.Regr}/\left(k-1\right)}{\text{DEV.Res}/\left(n-k\right)} = \frac{R^2/\left(k-1\right)}{\left(1-R^2\right)/\left(n-k\right)}$$

	Outp	at ao	iia ia:	12.011	e RE	O1 (\
	Α	В	С	D	Е	F	G
1	b _k	b _{k-1}		b ₂	b ₁	b ₀	а
2	s _k	S _{k-1}		S ₂	s ₁	S ₀	Sa
3	R2	se _y					
4	F	d_f					
5	SS _{reg}	SS _{resid}					
6							
Test F							



Sessione al computer: verificare

$$F_c = \frac{\text{DEV.Regr}/(k-1)}{\text{DEV.Res}/(n-k)} = \frac{R^2/(k-1)}{(1-R^2)/(n-k)}$$

4. Porre

$$R_{(k-1\times k)} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

e $r_{(k-1\times 1)}=(0,0,\ldots,0)'$ equivale a testare l'ipotesi

$$\begin{pmatrix} \beta_2 \\ \beta_3 \\ \dots \\ \beta_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

Verifica della bontà di adattamento del modello

Analisi dei residui

Diverse tipologie di residui

Residui standardizzati

$$e_i/s$$

$$i=1,\ldots,n.$$

Residui studentizzati
$$r_i = \frac{e_i}{s\sqrt{1-h_{ii}}}$$
 $i=1,\ldots,n.$

$$i=1,\ldots,n.$$

Residui studentizzati di cancellazione

$$r_i^* = \frac{e_i}{s_{(i)}\sqrt{1 - h_{ii}}}$$

Come si trova s(i)

$$(n-k-1)s_{(i)}^2 = (n-k)s^2 - e_i^2/(1-h_{ii})$$

Quali sono le osservazioni più importanti nella stima di beta cappello?

- Punto di partenza.
- Un intervallo di confidenza al livello (1gamma) per il vettore beta è dato da:

$$(\beta - \hat{\beta})'X'X(\beta - \hat{\beta}) \le ks^2 f_{k,n-k,\gamma},$$

Quali sono sono più importanti nella stima di beta cappello?

· La distanza di Cook

$$D_i = (\hat{\beta}_{(i)} - \hat{\beta})' X' X (\hat{\beta}_{(i)} - \hat{\beta}) / (ks^2). \tag{4.53}$$

dove $\hat{\beta}_{(i)}$ è la stima dei minimi quadrati di β omettendo l'osservazione i-esima (eq.

Con semplici passaggi

$$D_i = \frac{e_i^2 h_{ii}}{ks^2 (1 - h_{ii})^2} = \frac{h_{ii}}{1 - h_{ii}} \frac{r_i^2}{k}$$

 Distanza di Cook modificata (Atkinson, 1985)

$$C_{i} = \left\{ \frac{n-k}{k} \right\}^{1/2} \left\{ \frac{h_{ii}}{(1-h_{ii})^{2}} \frac{e_{i}^{2}}{s_{(i)}^{2}} \right\}^{1/2}$$
$$= \left\{ \frac{n-k}{k} \frac{h_{ii}}{1-h_{ii}} \right\}^{1/2} |r_{i}^{*}|.$$

Intervallo di confidenza del valore y0 associato ad uno specifico insieme di valori delle variabili esplicative

$$y_0 = \beta' x_0 + \varepsilon_0.$$

Es. investimenti PIL e trend

Anni	investimenti (y)	P.I.L. (X_1)	Trend (X_2)
1982	209.952	1060.859	1
1983	207.825	1073.783	2
1984	214.923	1101.366	3
1985	215.985	1132.313	4
1986	220.371	1164.465	5
1987	230.058	1200.523	6
1988	245.872	1246.966	7
1989	256.720	1282.905	8
1990	266.044	1310.659	9
1991	268.273	1325.582	10
1992	263.361	1333.072	11
1993	229.628	1317.668	12
1994	230.785	1346.267	13
1995	246.659	1385.830	14
1996	249.619	1395.408	15
	Fonte: ISTAT	-	•

$$x_0' = (1, 1405, 16)$$

$$y_0 = \beta' x_0 + \varepsilon_0.$$

Strategia

Passiamo attraverso e₀ e poi esplicitiamo
 y₀

$$e_0 = y_0 - \widehat{y}_0 = \left(\beta - \widehat{\beta}\right)' x_0 + \varepsilon_0.$$

$$\frac{e_0 - E(e_0)}{\sqrt{var(e_0)}} \sim N(0, 1)$$

Troviamo $E(e_0)$ e $var(e_0)$

$$e_0 = y_0 - \widehat{y}_0 =$$

$$E\left(e_{0}\right)=E\left(\left(\beta-\hat{\beta}\right)'x_{0}+\varepsilon_{0}\right)=E\left(\beta'x_{0}\right)-E\left(\hat{\beta}'x_{0}\right)+E\left(\varepsilon_{0}\right)=0.$$

Var(e₀)

$$var(e_0) = var(y_0 - x'_0\hat{\beta})$$

$$= var(y_0) + var(x'_0\hat{\beta})$$

$$= var(y_0) + x'_0var(\hat{\beta})x_0$$

$$= var(y_0) + x'_0\sigma^2(X'X)^{-1}x_0$$

$$var(e_0) = \sigma^2(1 + x_0'(X'X)^{-1}x_0)$$

$$\widehat{var}(e_0) = s^2 (1 + x_0'(X'X)^{-1}x_0)$$

Ob. trovare intervallo di conf. per y₀

$$\frac{e_0 - E(e_0)}{\sqrt{s^2(1 + x_0'(X'X)^{-1}x_0)}} = \frac{e_0 - E(e_0)}{\sqrt{\widehat{Var}(e_0)}} \sim t(n - k)$$

$$\Pr\left(-t_{\gamma} \le \frac{e_0 - E(e_0)}{\sqrt{\widehat{var}(e_0)}} \le t_{\gamma}\right) = 1 - \gamma$$

Ob. trovare intervallo di conf. per y₀

$$\Pr\left(-t_{\gamma} \le \frac{e_0 - E(e_0)}{\sqrt{\widehat{var}(e_0)}} \le t_{\gamma}\right) = 1 - \gamma$$

$$\Pr\left(-t_{\gamma}\sqrt{\widehat{var}(e_0)} \le e_0 \le t_{\gamma}\sqrt{\widehat{var}(e_0)}\right) = 1 - \gamma$$

$$\Pr\left(-t_{\gamma}\sqrt{\widehat{var}(e_0)} \le y_0 - \hat{y}_0 \le t_{\gamma}\sqrt{\widehat{var}(e_0)}\right) = 1 - \gamma$$

$$\Pr\left(\hat{y}_0 - t_\gamma \sqrt{\widehat{var}(e_0)} \le y_0 \le \hat{y}_0 + t_\gamma \sqrt{\widehat{var}(e_0)}\right) = 1 - \gamma$$

Es. investimenti PIL e trend

Anni	investimenti (y)	P.I.L. (X_1)	Trend (X_2)
1982	209.952	1060.859	1
1983	207.825	1073.783	2
1984	214.923	1101.366	3
1985	215.985	1132.313	4
1986	220.371	1164.465	5
1987	230.058	1200.523	6
1988	245.872	1246.966	7
1989	256.720	1282.905	8
1990	266.044	1310.659	9
1991	268.273	1325.582	10
1992	263.361	1333.072	11
1993	229.628	1317.668	12
1994	230.785	1346.267	13
1995	246.659	1385.830	14
1996	249.619	1395.408	15
	Fonte: ISTAT		

$$x_0' = (1, 1405, 16)$$

Es. investimenti PIL e trend

$$\hat{y}_0 = x_0' \hat{\beta} = \begin{pmatrix} 1 & 1405 & 16 \end{pmatrix} \begin{pmatrix} -441.272 \\ 0.625 \\ -12.522 \end{pmatrix} = 236.818$$

$$\widehat{var}(e_0) = s^2 (1 + x_0'(X'X)^{-1}x_0)$$

$$x'_0(X'X)^{-1}x_0 = \begin{pmatrix} 1 & 1405 & 16 \end{pmatrix} \begin{pmatrix} 136.422 & -0.13 & 3.227 \\ -0.1302 & 0.0001 & -0.003 \\ 3.22733 & -0.003 & 0.081 \end{pmatrix} \begin{pmatrix} 1 \\ 1405 \\ 16 \end{pmatrix}$$

$$= 0.4963$$

$$\widehat{var}(e_0) = 5.20355^2 \sqrt{1 + 0.4963} = 40.515$$

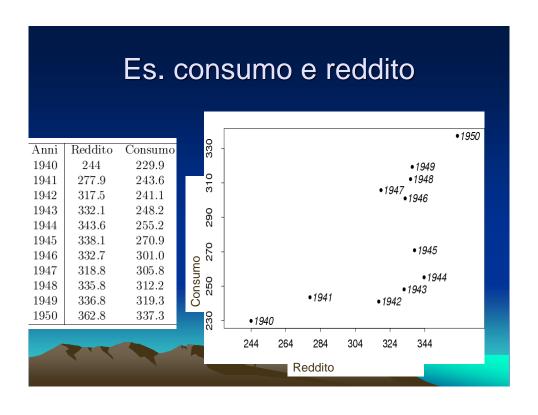
Intervallo di confidenza per yo

$$\Pr\left(\hat{y}_0 - t_\gamma \sqrt{\widehat{var}(e_0)} \le y_0 \le \hat{y}_0 + t_\gamma \sqrt{\widehat{var}(e_0)}\right) = 1 - \gamma$$

$$\Pr\left(236.818 - 3.0545 \times 40.515 \le y_0 \le 236.818 + 3.0545 \times 40.515\right) = 0.99$$

$$\Pr\left(217.375 \le y_0 \le 256.260\right) = 0.99$$

Sessione al computer: calcolare l'intervallo di confidenza per y₀



Aggiunta di una variabile dummy

	/ Intercetta	Reddito	Variabile dummy \
	1	244	0
	1	277.9	0
	1	317.5	1
	1	332.1	1
X =	1	343.6	1
$\Lambda =$	1	338.1	1
	1	332.7	0
	1	318.8	0
	1	335.8	0
	1	336.8	0
	1	362.8	0

Risultati del modello di regr. linere multiplo

	Coefficienti	Errore standard	Stat t	Livello di significatività
Intercetta	-10.0649	28.44336	-0.35386	0.732591
Reddito	0.959595	0.089481	10.72398	5.03E-06
Dummy	-55.4624	5.902399	-9.39659	1.35E-05

Tabella 1.4: Stime dei coefficienti (standard errors, statistiche t e livelli di significatività (p-values)) calcolati sui dati della tabella 1.3, dopo aver aggiunto la variabile dummy

