

Introduzione agli elementi aleatori

	N. dipendent i (X)	Vendite in milioni di € (Y)			
Α	10	1,9			
В	18	3,1			
C	20	3,2			
D	8	1,5			
Е	30	6,2			
F	12	2,8			
G	14	2,3			

	Prezzi in Euro (x)	Vendite (Y)
Α	1.55	410
В	1.60	380
С	1.65	350
D	1.60	400
Е	1.50	440
F	1.65	380
G	1.45	450
H	1.50	420

Introduzione agli elementi aleatori

- Le vendite sono dovute in parte ai prezzi e in parte a fattori di natura aleatoria e perciò sono esse stesse delle v.c.
- Al contrario I dipendenti e/o i prezzi non sono v.c. poiché sono del tutto prevedibili dalla compagnia che li stabilisce

Introduzione agli elementi aleatori

- Una successione di valori fissi
- X₁, X₂, ... X_n
- · a cui sono associate n v.c. indipendenti
- Y₁, Y₂, ... Y_n
- Il punto cruciale consiste nel descrivere in modo appropriato tali v.c.
- E(Y_i)? var(Y_i)? Distribuzione di Y_i?

Assunzioni su Yi

- Tutte le osservazioni sono caratterizzate dallo stesso grado di incertezza
- $var(Y_i) = \sigma^2$

- σ² è un parametro incognito da stimare
- \bullet cov $(Y_i, Y_j)=0$

i≠j

Assunzioni su Yi

- $E(Y_i) = \mu_i$ i=1, 2, ..., n
- i valori osservati della variabili dipendente provengono da n distribuzioni di probabilità con medie incognite
- Ip. le medie delle distribuzioni variano linearmente con la variabili indipendente
- $\mu_i = E(Y_i) = \alpha + \beta x_i$

Assunzioni su Y_i (continua)

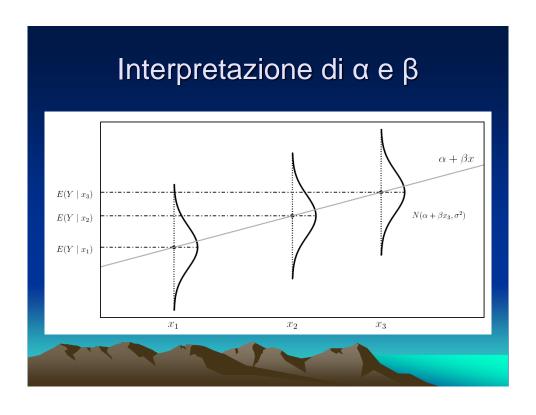
- Ip: $\mu_i = E(Y_i) = \alpha + \beta x_i$
- Questa ipotesi equivale ad affermare che i punti

 $(x_1, \mu_1), (x_2, \mu_2), ..., (x_n, \mu_n)$ stiano tutti su una retta con parametri α , β

 Oss: questa assunzione non implica che tutti i punti (x_i, y_i) stiano sulla retta ma che i valori medi delle distribuzioni da cui i punti provengono verificano l'equazione della retta

Interpretazione di α e β

 I parametri α e β rappresentano l'intercetta ed il coeff. angolare della retta sulla quale giacciono le medie incognite delle distribuzioni Y₁, ..., Y_n



Osservazione

- Dato il modello di regressione
- $Y_i = \alpha + \beta x_i + \varepsilon_i$
- L'ip: $\mu_i = E(Y_i) = \alpha + \beta x_i$
- equivale ad affermare che
- $E(\varepsilon_i)=0$

Stima dei parametri

- I parametri da stimare sono
- α , β , μ_1 , μ_2 , ..., μ_n , σ^2
- La conoscenza di α, β consente di ricostruire tutte le medie incognite μ₁, μ₂, ..., μ_n

Stime di α e β

 Pensando di ripetere più volte l'esperimento che ha generato le osservazioni y₁, ..., y_{n,} per valori fissi di x₁, ..., x_n si ottiene una distribuzione campionaria di valori

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x}$$

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x}$$

$$\hat{\beta} = \frac{\sum (x_i - \overline{x})Y_i}{\sum (x_i - \overline{x})^2}$$

Stime di µ,

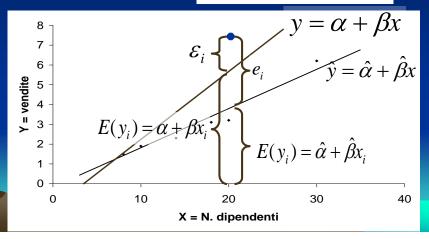
Coeff. di regressione campionari e nella popolazione

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
$$y_i = \hat{\alpha} + \hat{\beta} x_i + e_i$$

Coeff. di regressione campionari e nella popolazione

$$y_i = \alpha + \beta x_i + \varepsilon_i$$
 $y_i = \hat{\alpha} + \hat{\beta} x_i + e_i$



Stima di σ²

- σ²= dispersione verticale attorno alla retta che unisce i valori medi delle popolazioni
- Dato che σ²=E(ε_i²)
- Dato che e_i è una stima di ϵ_i sembra naturale utilizzare come stimatore di σ^2 la seguente espressione

$$s^{2} = \frac{\sum (y_{i} - \hat{\mu}_{i})^{2}}{n - 2} = \frac{\sum e_{i}^{2}}{n - 2}$$

Stima di σ^2

 Utilizziamo gli scostamenti dalle medie delle popolazioni

$$s^{2} = \frac{\sum (y_{i} - \hat{\mu}_{i})^{2}}{n - 2} = \frac{\sum e_{i}^{2}}{n - 2}$$

Stima di σ^2

 Excel definisce s come "errore standard nella stima di Y" (se_y nel linguaggio di Excel)

$$s = \sqrt{\frac{\sum e_i^2}{n-2}}$$

 Si può ottenere direttamente tramite la funzione ERR.STD.YX.

Funzione regr.lin

 Ordine in cui vengono restituite le statistiche aggiuntive di regressione dalla funzione di Excel REGR.LIN

		А	В	С	D	E	F	G
•	1	b _k	b _{k-1}		b_2	b ₁	b ₀	а
2	2	s _k	S _{k-1}		S ₂	S ₁	S ₀	Sa
3	3	R2	se _y					
4	4	F	d _f					
5	5	SS _{reg}	SS _{resid}					
6	3							
	R	7,4		V		~		

Ip. aggiuntiva

- Le distribuzioni Y_i sono normali
- y_1 è una realizzazione di $Y_1 \sim N(\mu_1, \sigma^2)$
- y_2 è una realizzazione di Y_2 ~ $N(\mu_2, \sigma^2)$
- •
- y_n è una realizzazione di $Y_n \sim N(\mu_n, \sigma^2)$
- Y₁, Y₂, ..., Y_n sono indipendenti

Richiami sulla v.c. normale

- se Y ~ $N(\mu, \sigma^2)$
- $Z=(Y-\mu)/\sigma \sim N(0,1)$
- Pr(-1.96 < Z <1.96) =0.95
- aY+b ~ $N(b + \mu, a^2\sigma^2)$

Richiami sulla costruzione degli int. di confidenza

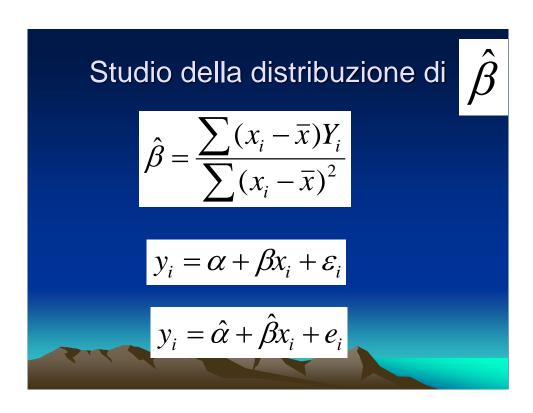
$$Z(\bar{X}_n) = \frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{var(\bar{X}_n)}} = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$

$$\Pr\left(-1.96 < \frac{\overline{X} - E(\overline{X})}{\sqrt{\text{var}(\overline{X})}} < 1.96\right) = 0.95$$

$$\Pr\left(-1.96 < \frac{\overline{X} - \mu}{\sqrt{\text{var}(\overline{X})}} < 1.96\right) = 0.95$$

$$\Pr(\overline{X} - 1.96\sqrt{\operatorname{var}(\overline{X})} < \mu < \overline{X} + 1.96\sqrt{\operatorname{var}(\overline{X})}) = 0.95$$

Obiettivo Costruire intervalli di confidenza e test di verifica d'ipotesi sul coeff. angolare \$\hat{\beta}\$



Studio della distribuzione di

$$\hat{\beta} = \frac{\sum (x_i - \bar{x})Y_i}{\sum (x_i - \bar{x})^2}$$

$$E(\hat{\beta}) = ?$$

$$E(\hat{\beta}) = \beta$$

$$\operatorname{var}(\hat{\beta}) = ?$$

$$E(\hat{\beta}) = ?$$

$$E(\hat{\beta}) = \beta$$

$$var(\hat{\beta}) = ?$$

$$var(\hat{\beta}) = \frac{\sigma^2}{\sum (x_i - \bar{x})^2}$$

Varianza di beta cappello

$$\operatorname{var}(\hat{\beta}) = \operatorname{var}\left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})Y_i}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right)$$

$$\operatorname{var}(\hat{\beta}) = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} \operatorname{var}\left(\sum_{i=1}^{n} (x_i - \overline{x})Y_i\right)$$

$$\operatorname{var}(\hat{\beta}) = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} \left(\sum_{i=1}^{n} \operatorname{var}(x_i - \overline{x}) Y_i\right)$$

Varianza di beta cappello

$$\operatorname{var}(\hat{\beta}) = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \overline{x})^2\right]^2} \left(\sum_{i=1}^{n} \operatorname{var}(x_i - \overline{x}) Y_i\right)$$

$$var(\hat{\beta}) = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^2} \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 var Y_i\right)$$

$$\operatorname{var}(\hat{\beta}) = \frac{1}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right]^2} \left(\sum_{i=1}^{n} (x_i - \bar{x})^2 \sigma^2\right) \operatorname{var}(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$\operatorname{var}(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Al posto di σ^2 sostituiamo il suo stimatore

$$Stima(var(\hat{\beta})) = s^{2}(\hat{\beta}) = \frac{s^{2}}{\sum (x_{i} - \overline{x})^{2}}$$

· La radice quadrata della stima della varianza di uno stimatore è l'errore standard (standard error, SE) dello stimatore

$$s_{\hat{\beta}} = SE(\hat{\beta}) = \frac{s}{\sqrt{\sum (x_i - \overline{x})^2}}$$

Interpretazione dello standard error di beta cappello

 Rappresenta l'errore quadratico medio che si commette quando si stima il coefficiente di regressione con le formule dei minimi quadrati

Funzione regr.lin

 Lo standard error di beta cappello è riportato nella zona di output di regr.lin all'incrocio della seconda riga e prima colonna)

	А	В	С	D	E	F	G
1	b _k	b _{k-1}		b ₂	b ₁	b ₀	а
2	s _k	S _{k-1}		S ₂	s ₁	S ₀	Sa
3	R2	se _y					
4	F	d _f					
5	SS _{reg}	SS _{resid}					
6							
	7.4				7		

Studio della distribuzione di

$$\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{x}$$

$$E(\hat{\alpha}) = ?$$

$$E(\hat{\alpha}) = ?$$
 $E(\hat{\alpha}) = \alpha$

$$var(\hat{\alpha}) = ?$$

$$\operatorname{var}(\hat{\alpha}) = ? \qquad \operatorname{var}(\hat{\alpha}) = \sigma^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{\sum (x_{i} - \bar{x})^{2}} \right]$$

Esercizio: nell'esempio dei 7 supermercati calcolare lo standard error di beta cappello e alpha cappello

$$s_{\hat{\beta}} = SE(\hat{\beta}) = \frac{s}{\sqrt{\sum (x_i - \bar{x})^2}} = 0.025$$

$$s_{\hat{\alpha}} = SE(\hat{\alpha}) = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2}} = 0.44$$

Costruzione di intervalli di confidenza dei parametri

Punto di partenza: lo scostamento standardizzato di beta capello ha una distribuzione N(0,1)

$$\Pr\left(-Z_{\gamma} < \frac{\hat{\beta} - E(\hat{\beta})}{\sqrt{\operatorname{var}(\hat{\beta})}} < Z_{\gamma}\right) = 1 - \gamma$$

• Se 1-*γ*=0.95

$$\Pr(-1.96 < \frac{\hat{\beta} - E(\hat{\beta})}{\sqrt{\text{var}(\hat{\beta})}} < 1.96) = 0.95$$

$$\Pr(-1.96 < \frac{\hat{\beta} - E(\hat{\beta})}{\sqrt{\text{var}(\hat{\beta})}} < 1.96) = 0.95$$

$$\Pr\left(-1.96 < \frac{\hat{\beta} - \beta}{\sqrt{\frac{\sigma^2}{\sum (x_i - \bar{x})^2}}} < 1.96\right) = 0.95$$

Problema: σ² è ignoto (occorre sostituire il suo stimatore s²)

Studio della distribuzione di s²

• Si può dimostrare che $E(S^2)=\sigma^2$ e che

$$\frac{(n-2)\,s^2}{\sigma^2} \sim \chi^2_{(n-2)}$$

Sostituendo al posto di σ² il suo stimatore

$$\Pr\left(-1.96 < \frac{\hat{\beta} - \beta}{\sqrt{\frac{\sigma^2}{\sum (x_i - \bar{x})^2}}} < 1.96\right) = 0.95$$

$$\frac{\hat{\beta} - \beta}{\sqrt{\frac{s^2}{\sum_i (x_i - \overline{x})^2}}} = \frac{\left(\hat{\beta} - \beta\right) / \sqrt{\frac{\sigma^2}{\sum_i (x_i - \overline{x})^2}}}{\sqrt{\frac{s^2}{\sigma^2}}} = \frac{N(0, 1)}{\sqrt{\frac{\chi_{n-2}^2}{n-2}}}$$

Costruzione di un intervallo di confidenza per il coeff. angolare

$$\Pr\left(\hat{\beta} - t_{\gamma} s_{\hat{\beta}} \le \beta \le \hat{\beta} + t_{\gamma} s_{\hat{\beta}}\right) = 1 - \gamma$$

 Dove t_y è il quantile (percentile) associato alla distribuzione T di Student con (n-2) gradi di libertà tale che (v. p. 44)

dove t_{γ} è il percentile di una variabile T di Student con (n-2) gradi di libertà tale per cui $\Pr(T \leq -t_{\gamma}) = \Pr(T \geq t_{\gamma}) = \gamma/2$.

Costruzione di intervalli di confidenza dei parametri

Esercizio: nell'esempio dei 7 supermercati costruire un intervallo di confidenza al 95% per β ed interpretare i risultati ottenuti

Costruzione di un intervallo di confidenza al 95% per il coeff. angolare

$$\Pr\left(\hat{\beta} - t_{\gamma} s_{\hat{\beta}} \le \beta \le \hat{\beta} + t_{\gamma} s_{\hat{\beta}}\right) = 1 - \gamma$$

- $t_{0.05}(5)=+2.5706$ (=INV.T(0.05;5)
- (Oss: Pr.(T(5)>2.5706)=0.025)
- Pr(0.198-2.5706× 0.0253<β< 0.198-2.5706× 0.0253)=0.95
- Pr(0.133<β< 0.263)=0.95

Interpretazione

- L'intervallo di confidenza del coefficiente di regressione, con probabilità uguale a 0.95, va da 0,133 a 0,263.
- Questo significa che nell'universo di riferimento, all'aumento di un dipendente può corrispondere un aumento delle vendite compreso tra 133 mila Euro e 263 mila Euro circa (con probabilità del 95%).
- Oss: l'intervallo è piuttosto ampio e questo dipende dalla ridotta numerosità campionaria (solo 7 supermercati).

Intervallo di confidenza per l'intercetta

Costruzione di un intervallo di confidenza al 95% per l'intercetta

$$\Pr\left(\hat{\alpha} - t_{\gamma} s_{\hat{\alpha}} \le \alpha \le \hat{\alpha} + t_{\gamma} s_{\hat{\alpha}}\right) = 1 - \gamma$$

- $t_{0.05}(5) = +2.5706$ (=INV.T(0.05;5)
- (Oss: Pr.(T(5)>2.5706)=0.025)
- $Pr(-1.31 < \alpha < 0.96) = 0.95$

Costruzione di un intervallo di confidenza al 95% per σ²

Punto di partenza

$$\frac{\left(n-2\right)s^2}{\sigma^2} \sim \chi^2_{(n-2)}$$

$$\Pr\left(\chi_{0.025}^2(n-2) \le \frac{(n-2)\,s^2}{\sigma^2} \le \chi_{0.975}^2(n-2)\right) = 0.95$$

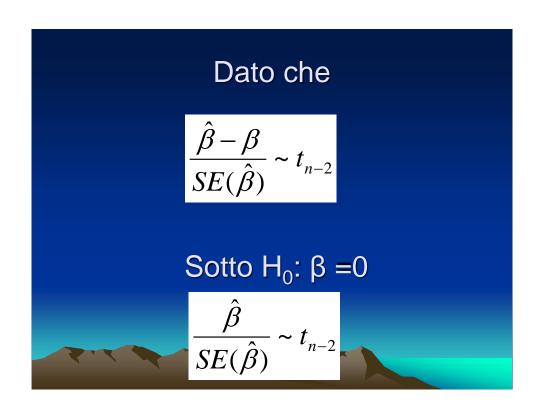
$$\Pr\left(\frac{(n-2)\,s^2}{\chi_{0.975}^2(n-2)} \le \sigma^2 \le \frac{(n-2)\,s^2}{\chi_{0.025}^2(n-2)}\right) = 0.95$$

- per trovare $\chi^2_{0.975}$ utilizzo =INV.CHI(0.025;5)=0.83
- per trovare χ²_{0.025} utilizzo
- =INV.CHI(0.975;5)=12.83

$$\Pr\left(\frac{(n-2)\,s^2}{\chi_{0.975}^2(n-2)} \le \sigma^2 \le \frac{(n-2)\,s^2}{\chi_{0.025}^2(n-2)}\right) = 0.95$$

• $Pr(0.08 < \sigma^2 < 1.30) = 0.95$

Costruzione di test di ipotesi per αβ σ²



Funzione regr.lin · Ordine in cui vengono restituite le statistiche aggiuntive di regressione dalla funzione di Excel REGR.LIN b_k b_{k-1} b_2 b_1 b_0 S_2 S_{k-1} s_1 S₀ Sa R2 se_v lF d_f SS_{resid} SSrea

Esercizio: nell'esempio dei 7 supermercati testare $H_0:\beta=0$, trovare il relativo p-value ed interpretare il risultato del test

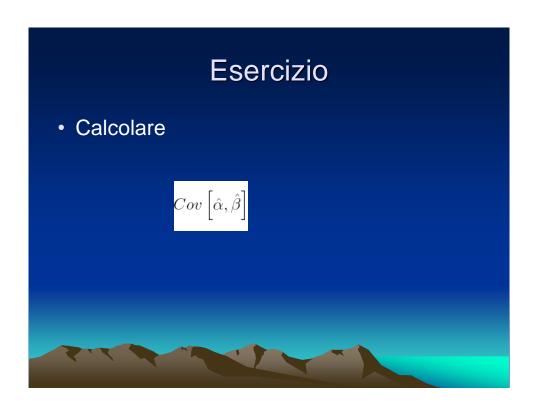
 $t_{\beta} = 7.82$ p-value = 0.000548

Interpretazione : rifiuto decisamente l'ipotesi nulla

Esercizio: nell'esempio dei 7 supermercati testare $H_0:\alpha=0$, trovare il relativo p-value ed interpretare il risultato del test

 t_{α} =0.39 p-value = 0.714

Interpretazione : non posso rifiutare l'ipotesi nulla



Intervallo di confidenza delle previsioni con il metodo dei minimi quadrati

Strumenti necessari propedeutici

$$\begin{aligned} var(aX_1 + bX_2) &= E((aX_1 + bX_2) - (a\mu_1 + b\mu_2))^2 \\ &= E(a(X_1 - \mu_1) + b(X_2 - \mu_2))^2 \\ &= E(a^2(X_1 - \mu_1)^2 + b^2(X_2 - \mu_2)^2 + 2ab(X_1 - \mu_1)(X_2 - \mu_2)) \\ &= a^2 var(X_1) + b^2 var(X_2) + 2ab \ cov(X_1, X_2). \end{aligned}$$

Calcolo della var. dell'errore di previsione

$$\widehat{y}_0 = \widehat{\alpha} + \widehat{\beta}x_0$$

$$e_0 = y_0 - \hat{y}_0$$

$$= \alpha + \beta x_0 + \varepsilon_0 - \hat{\alpha} - \hat{\beta} x_0$$

$$= (\alpha - \hat{\alpha}) + (\beta - \hat{\beta}) x_0 + \varepsilon_0$$

$$Var\left[e_{0}\right] = Var\left[\hat{\alpha}\right] + \left(x_{0}\right)^{2}Var\left[\hat{\beta}\right] + 2x_{0}Cov\left[\hat{\alpha},\hat{\beta}\right] + Var\left[\varepsilon_{0}\right]$$

Calcolo della var. dell'errore di previsione

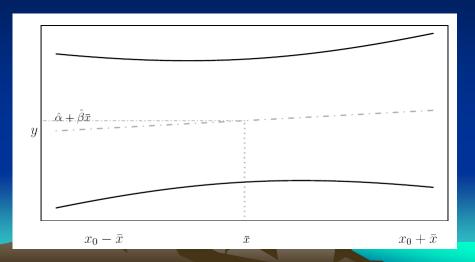
$$Var\left[e_{0}\right] = Var\left[\hat{\alpha}\right] + \left(x_{0}\right)^{2} Var\left[\hat{\beta}\right] + 2x_{0}Cov\left[\hat{\alpha},\hat{\beta}\right] + Var\left[\varepsilon_{0}\right]$$

$$Var\left[e_{0}\right] \quad = \quad \sigma^{2}\left[\frac{1}{n}+\frac{\overline{x}^{2}}{\sum_{i}\left(x_{i}-\overline{x}\right)^{2}}+\frac{\left(x_{0}\right)^{2}}{\sum_{i}\left(x_{i}-\overline{x}\right)^{2}}-2x_{0}\frac{\overline{x}}{\sum_{i}\left(x_{i}-\overline{x}\right)^{2}}+1\right]$$

$$= \sigma^{2} \left[1 + \frac{1}{n} + \frac{\left(x_{0} - \overline{x}\right)^{2}}{\sum_{i} \left(x_{i} - \overline{x}\right)^{2}} \right]$$

Osservando attentamente quest'ultima relazione si può notare che la varianza dell'errore di previsione è minima quando $x_0 = \overline{x}$ e cresce in modo non lineare all'allontanarsi di x_0 da \overline{x} .

Bande di confidenza dell'errore di previsione (p. 55)



Costruzione di un intervallo di confidenza per y₀

· Tenendo presente che

$$\frac{e_0 - E(e_0)}{\sqrt{\operatorname{var}(e_0)}} \sim N(0,1)$$

$$\frac{e_0 - E(e_0)}{\sqrt{\hat{\text{var}}(e_0)}} \sim T(n-2)$$

$$\frac{e_0}{\sqrt{\hat{\text{var}}(e_0)}} \sim T(n-2)$$

$$\frac{y_0 - \hat{y}_0}{\sqrt{\hat{\text{var}}(e_0)}} \sim T(n-2)$$

Costruzione di un intervallo di confidenza per y₀

$$\frac{y_0 - \hat{y}_0}{\sqrt{\hat{\text{var}}(e_0)}} \sim T(n-2)$$

$$\Pr\!\left(-t_{\gamma} < \frac{y_0 - \hat{y}_0}{\sqrt{\hat{\text{var}}(e_0)}} < t_{\gamma}\right) = 1 - \gamma$$

$$\Pr\left[\hat{y}_0 - t_\gamma \sqrt{\hat{var}\left[e_0\right]} \le y_0 \le \hat{y}_0 + t_\gamma \sqrt{\hat{var}\left[e_0\right]}\right] = 1 - \gamma$$

vedi p. 167

Esercizio: per un numero di dipendenti pari a 16 costruire un intervallo di previsione delle vendite al 95%

$$\Pr\left[\widehat{y}_{0} - t_{\gamma/2}\sqrt{\widehat{Var}\left[e_{0}\right]} \leq y_{0} \leq \widehat{y}_{0} + t_{\gamma/2}\sqrt{\widehat{Var}\left[e_{0}\right]}\right] = 1 - \gamma$$

$$Var\left[e_{0}\right] = \sigma^{2}\left[1 + \frac{1}{n} + \frac{\left(x_{0} - \overline{x}\right)^{2}}{\sum_{i}\left(x_{i} - \overline{x}\right)^{2}}\right]$$

$$Pr(3 - 2.57 \times 0.4966 < y_0 < 3 + 2.57 \times 0.4966) = 0.95$$

$$Pr(1.72 < y_0 < 4.28) = 0.95$$

