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Abstract The Forward Search is used in an exploratory manner, with many random
starts, to indicate the number of clusters and their membership in continuous data.
The prospective clusters can readily be distinguished from background noise and
from other forms of outliers. A confirmatory Forward Search, involving control on
the sizes of statistical tests, establishes precise cluster membership. The method
performs as well as robust methods such as TCLUST. However, it does not require
prior specification of the number of clusters, nor of the level of trimming of outliers.
In this way it is “user friendly”.

1 Introduction

It is now widely recognized that contamination can strongly affect the results of
clustering methods if it is not properly taken into account. The first attempts in
this direction mainly aimed at protecting against contamination from noise. In fact,
the inclusion of noise variables can have dramatic masking consequences on the
data structure recovered by distance-based clustering methods. Pioneering studies
of such effects were presented by Milligan (1980) and Fowlkes et al. (1988). In
a model-based clustering framework, noise can be described through a uniformly
distributed component and Fraley and Raftery (2002) suggest a unified approach for
dealing with it; see also Coretto and Hennig (2010). However, uniform background
noise is not the only type of departure from “ideal” conditions against which one
may want to protect. Typical instances that need to be accommodated in practice
include both extreme outliers, e.g. anomalous observations due to undetected
changes in the physical process generating the data or to measurement errors,
and intermediate outliers, e.g. observations not firmly belonging to any of the
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established groups (Riani et al. 2014). Robust clustering methods, for a thorough
review of which we refer to Gallegos and Ritter (2009) and to Garcia-Escudero
et al. (2010), aim at addressing all these issues, by neutralizing the effect of both
types of outliers and that of noise.

Robust clustering is often defined in a model-based framework in which obser-
vations are assumed to come from distinct multivariate populations. Formally, let
Y = {¥1...., ¥} denote a sample of v-variate observations Vi = Vis-on, v,
fori = 1,...,n. In case of no contamination, a popular approach is to search for
the partition into X groups that maximizes the “classification likelihood™ function

K n
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where ¢ (y;, 0;) is a v-variate density depending on the multidimensional parameter
0%, and zi is the indicator variable taking the value 1 if y; belongs to group k and
0 otherwise. The value of K, the number of groups, is assumed to be known when
fitting the classification likelihood function.

When outliers and noise are present, a trimmed version of (1) has been proposed

by Garcia-Escudero et al. (2008). Their robust approach, called TCLUST, is based
on maximizing the function

K
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where ¢ (), zx and K have the same meaning as in (1), 7 € [0, 1] is an unknown
weight taking into account the specific size of groupk, 0 < a < 0.5 is the trimming
level and R, is a subset of the set of indices {1....,n} whose cardinality is [n(1 —
a)] + 1. TCLUST clustering is currently implemented in an R package (Fritz et al.
2012) and in the FSDA toolbox for Matlab (Riani et al. 2012).

The TCLUST methodology has good theoretical properties and has proven to
be effective in practical applications (see, e.g., Cerioli and Perrotta 2014). Being
a model-based approach, it requires many a priori choices on behalf of the user.
First, it is necessary to specify the form of the v-variate density ¢(y;, Ox). Although
alternative distributions have been recently introduced (see Lee and McLachlan
2013 and the subsequent discussion), the typical choice in (2) is the multivariate
normal density function, which is also at the heart of the non-robust proposal (1).
Therefore, 8 corresponds to the mean vector i and to the covariance matrix X, for

group k. These parameters are estimated in TCLUST through a complex iterative
EM-like procedure, also involving the restrictions
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where kz(ﬁ'k) is a generic eigenvalue of the estimated cove'lriance matrix of group
%k and ¢ > 1 is a fixed constant which defines constraints on the shape and,
implicitly, on the size of the K clusters. For §xamp1e, Fhe valu.e ¢ = 1 corresponds
to imposing spherical groups of constant variance, Whll? the limiting case ¢ — 00
gives unconstrained heterogeneous clusters. The specific value of ¢ is a tuning
parameter that must be chosen by the user. . o
Similarly, both K and o are assumed to be known when fitting the obJect1ye fupc—
tion (2). Garcfa-Escudero et al. (2011) suggest the use of the so-called clgsmﬁcaﬁon
trimmed likelihood curves (TLC), as useful exploratory tools for sglectlng K and
o from the data. These curves are based on (2) and measure the gain achieved by
allowing a unitary increase in the number of groups for‘ a given value'of o. However,
there might be applications where the evidence provided by TLC is not so clear-
cut (Morelli 2013). The curves also depend on the selected value. of c. Therefore,
there is a crucial interplay among the choices made by the user ymth respec.t to the
different tuning parameters required for fitting the trimmed l1'l<e}1hood functu?n (2?.
The development of a unified data-driven framework for assisting these choices is
i an area of active research. , '
lﬁd;;‘i goal of this contribution is to compare the performance of TCLUST, W%th
respect both to the selection of the tuning parameters gnd to clustF:r recovery, with
that obtained through the Forward Search (FS). The FS is a robust diagnostic method
which has powerful outlier detection properties (Riani et a!. 2009), but. algo good
potential for clustering purposes (Atkinson et al. 2006; Atkinson gnd Rlam 2097).
Since it does not aim at finding the maximum of a complex objecnye function,
exploratory use of the FS does not require an explicit choice of a tuning constant
like ¢ in (3). Also the density ¢(y;, 6;) is only used for conﬁrmat‘ory purposes,
when formal hypothesis testing is required, and not for clustefr assignment at an
exploratory stage. In fact, the technique adopts some of the classical FOOI.S developed
for the customary normal-based multivariate model, like Mahglanobm distances, but
in its exploratory form the user has the ability for visual detection .of Flepartures f.rom
such a model. The FS assumes the existence of one or more elliptical populatlpns
for the “good” part of the data, which are taken as a reference benchrpark agall}st
which the observations are compared. Therefore, although compgtatlons‘ require
specification of a multivariate normal density, as in TCLUST, th.e diagnostic use of
the technique can effectively lead to detection of many alternative struf:tures, such
as extreme and intermediate outliers, or skew distributions. Even more importantly,
the FS provides simple data-driven rules for the choice of K and o that (.10 not
rely on fitting the trimmed likelihood function (2). Therefore, it may be c0n31de.red
as a practical “user-friendly” alternative to complex robust model—base.d clusten}ng
methods. We will see in a difficult example that it can provide powerful 1nformat19n
on the data structure, being virtually as illuminating as TCLUST when the latter is
appropriately tuned, while requiring only minimal intervegtion from the user. .
The structure of the paper is as follows. Section 2 introduces the FS, with
Sect. 2.3 describing the random start FS that we use to identify cluster structure.
In Sect. 3 this methodology is applied to a 2,000 observation example from




| 32 A.C. Atkinson et al.

| Garcia-Escudero et al. (2011). TInitial cluster identification from the search with
random starts is in Sect. 3.1. Section 3.2 uses plots of individual Mahalanobis
distances to illustrate the structure of the clusters. Confirmation of this structure,
using tests of specified size, is in Sect. 3.3. The paper concludes with a comparison
of the analysis of the same data using the robust TCLUST procedure.

2 The Forward Search

2.1 Owutlier Detection and Clustering

The main tool in clustering multivariate data with the forward search (FS) is the
detection of outliers. For a sample believed to come from a single multivariate
normal population, perhaps with outliers, the method described by Riani et al.
(2009) has good statistical properties (size and power of the outlier test). As
described, it does however require intervention of the data analyst. In this paper
we introduce the automatic version of this procedure extended to groups.

The method for a single population starts from a robustly chosen subset of
observations. The subset is increased from size to m+1 by forming the new subset
from the observations with the m + 1 smallest squared Mahalanobis distances. For
eachm (mog <m <n-— 1), we test for the presence of outliers, using the observation
outside the subset with the smallest Mahalanobis distance.

With data coming from two or more populations, starting with a subset of
observations in one of the clusters results in some observations from other clusters
being identified as outliers. Atkinson et al. (2004, Sect. 3.4) illustrate this point in
an analysis of 200 observations on Swiss banknotes. In that case the banknotes had
already been preliminarily classified into two groups, “genuine” and “forgeries”.
However, in the general clustering problem considered here, the number of clusters
is not known, let alone any approximate cluster membership, so that there is no
simple robust path to an initial subset. This difficulty was overcome by Atkinson
et al. (2006), who suggested a “random-start” forward search in which many initial
subsets of size my are selected at random. Monitoring the behaviour of the resulting
forward searches leads to an indication of the number and membership of clusters,

which can then be refined by the automatic outlier detection procedure. The details
are described in Sect. 2.3.

2.2 Mahalanobis Distances

In the forward search we estimate the parameters 4 and X of the v-dimensional
multivariate normal distribution of » by the standard unbiased estimators from a
subset of m observations, yielding estimates fi(m) and ¥ (m). From this subset we
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obtain n squared Mahalanobis distances
di(m) = {yi = M)} T (m){yi = pm)}, i=1..,n @&

Let S*(m) be the subset of size m found by the search. To detect outliers we use the
minimum Mahalanobis distance amongst observations not in the subset

din(m) = mind; (m) i ¢ S*(m). (3

In order to test for outliers we need a reference distribution for diz(m) in (4)
and hence for dyi(m) in (5). If we estimated ¥ from all n observations, the
statistics would have an F distribution. However, inAthe search we select tbe ggntrgl
m out of n observations to provide the estimate X'(m), soAtha}t th'e varl'abl-hty is
underestimated. To allow for estimation from this trupcated d1str1bpt10n, R1an1- et a(l1
(2009) provide a consistency factor to make the estlm'ate.app.rommately unblagfz h
They also provide an order-statistic argument for the distribution of q’min'(m). w 1;;
obviates the need for simulations in the calculation of the reference distribution. Ts
the search progresses, we perform a series of outlier tests,. one for gach m = mo. To
allow for the problem of multiple testing, we use the outlier detection rule of Rlz;nl
et al. (2009) which depends on the sample size and on the calculatgd envelopes 0;
the distribution of the test statistic. The results of thq FS are convenlgntly presen::/
graphically through forward plots of quantities of interest as functions of m. We
i lots in Sect. 3.3. .
lllu’i“ﬁ:tz;;iltgd values of the minimum Mahalanobis dis.tan.ces .increase rapidly
towards the end of the search, since we are looking at the d1str1l?ut10n of the .1argest
ordered Mahalanobis distances. In some cases, more informatlve. plqts, which we
do not use for testing, come from the use of the scaled Mahalanobis distances

N N 1/2v
dgem) = di(my x (|51 E@1) ©)

where X (n) is the estimate of ¥ at the end of the search. Examples are in Sect. 3.2
with, again, the details in Riani et al. (2009).

2.3 Random Start Forward Searches

If there are clusters in the data, the robustly chosen initial subset mg may lead to
a search in which observations from several clusters enter the subset haphazardly
in such a way that the clusters are not reveale.‘,d. Searches from more thgn ong
starting point are necessary to reveal the clustering structure. We thereﬁl)re nllstciad
run many forward searches, say R (500 in our example), from random y lsle ec eh
starting points, monitoring the evolution of the Va.llues of dyin(m, J) for eac1 §earlco
J»{(j = 1,...,R). The criterion used for moving from step m to m + 1 is als
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reminiscent of the Mahalanobis Fixed Point Clusters procedure of Hennig and
Christlieb (2002), where, however, a x2 threshold is used for defining the fitting
subset.

At the beginning of the search, a random start produces some very large
distances. But, because the search can drop units from the subset as well as adding
them, some searches are attracted to cluster centres. As the searches progress, the
various random start trajectories converge, with subsets containing the same units.
Once trajectories have converged, they cannot diverge again. As we see in Fig. 2,
which is typical of those for many data structures, the search is rapidly reduced
to only a few trajectories. It is these that provide information on the number and
membership of the clusters. Typically, in the last third of the search all trajectories
have coalesced into one. Interpreting such figures requires intervention from the
data analyst. However, once prospective clusters have been identified, the procedure
for cluster confirmation is automatic.

3 An Example of Garcia-Escudero et al.

3.1 Random Start Forward Search

Garcia-Escudero et al. (2011) provide a simulated data test case of 1,800 obser-
vations simulated from two-dimensional normal distributions, with 200 outliers
generated from a uniform distribution. The data are plotted in Fig. 1. The plot
appears to show one clear tight cluster, one moderately clearly defined cluster, a

Fig. 1 The 2,000 simulated observations of Garcia-Escudero et al. (2011), which include back-
ground contamination
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Fig. 2 Preliminary cluster identification. Top left-hand panel, the trajectories of minimum Maha-
lanobis distances dpi, (1, j) from 500 random start forward searches; the vertical trajectories occur
when clusters merge. Top right-hand panel, scatterplot, with preliminary Group 1 highlighted; the
first 420 units from the sharpest peak. Bottom left-hand panel, preliminary Group 2; the first 490
units from the lowest trajectory. Bottom right-hand panel, preliminary Group 3, the first 780 units
from the central peak. Highlighted group in each panel indicated -+

third more dispersed cluster and a background scatter. The clusters are thus of
disparate sizes, orientations and shapes (as measured by the eigenvalue ratio for
each cluster) and there is background contamination. A strange feature is that this
background contamination seems to contain a hole for large values of y, and slightly
smaller values of y;.

A traditional robust clustering method, such as PAM (Partitioning Around
Medoids, Kaufman and Rousseeuw 1990) when K = 3 finds three large clusters,
which include all the observations. A strong advantage of the FS is that we do not
have to cluster all observations, but can declare a data-chosen number of them to be
outliers.

The top left-hand panel of Fig.2 shows the forward plot of minimum Maha-
lanobis distances from 500 random start forward searches. The structure is exem-
plary in its clarity. By the time m = 300 there are just three distinct trajectories,
which we examine to see if they correspond to clusters. The vertical trajectories
occur at values of m when two clusters merge. At this stage in the analysis of cluster
structure we are not concerned about using tests of the correct size, but only in
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the detection of structure. Tests with carefully controlled statistical properties are,
however, important in the confirmation of cluster membership (Sect. 3.3).

We start with the first, highest, peak, which we call Group 1. The peak is caused
by dmin(m) indicating the remoteness of the nearest outlier to the fitted cluster.
Eventually, as more remote observations are included in the subset of size m, the
parameter estimates are sufficiently corrupted that the next nearest observation does
not seem so far away, and the peak declines. We “interrogate” the search just
before or after the peak. Here we choose m = 420, which is before the three
trajectories collapse into two. The top right-hand panel of Fig. 2 shows a scatterplot
of those units in the subset at this value of m for searches with this trajectory. These
searches have identified the small, tight cluster. With a small dispersion matrix, even
observations which are close to the cluster in the Euclidean norm have appreciable

Mahalanobis distances. That we continued a little after the peak in the search is

shown in the plot by the slightly more remote sample data points surrounding the
central core.

We now repeat the procedure for the other two trajectories. At m = 490 the
lowest trajectory yields the preliminary clustering shown in the bottom left-hand
panel of Fig.2. This relatively dispersed group does not have a clear boundary,
unlike Group 1. We do not get a peak in the trajectory because Groups 1 and 2 merge
shortly after m = 490. Because Group 2 has a larger dispersion matrix than Group
1, units in Group 1 do not, as the search progresses, seem particularly remote from
Group 2. Finally, we look at the third trajectory at m = 780. This is a relatively

isolated group, the trajectory for which rises to a clear peak before declining. Its

membership is shown in the bottom right-hand panel of the figure.

There remains one final feature of interest in Fig. 2. In a forward plot of distances
calculated from a sample from a normal population, the curves rise at the end, as
the envelopes in Fig.2 show. However, when all observations are fitted, there is
no evidence of any outliers; the sample trajectory lies within the envelope. More
importantly, for the last third or more, the trajectory lies appreciably below the
envelopes, suggesting that the tails of the single multivariate distribution being fitted
are too short; here, this is an indication of uniform outliers over a fixed region.

3.2 Plots of Individual Scaled Distances

Further insight into the structure of the data and the workings of the FS can
be obtained from the forward plots of individual Mahalanobis distances, that is
the trajectory of the distances for each observation. For this we use the scaled
distances (6) which, unlike the distances in the top-left panel of Fig.2, do not
increase appreciably towards the end of the search.

With clustered data, there are many possible series of plots. We divide the
observations into four groups based on the classification shown in Fig. 2 and see how
the different groups behave during a search starting in tentative Group 1. Figure 3
shows the very different behaviour of these distances. The top left-hand panel is for
the members of Group 1. Initially the distances have a distribution ranging upwards
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Fig. 3 Forward plots of individual scaled Mahalanobis distances 4°(m) from the preliminary
classification shown in Fig. 2 when the FS starts in Group 1. Reading across, Groups 1, 2, 3 and
zero (the outliers). Note the differing vertical scales in the panels

from zero, whereas the other two groups and the outliers, all remote from the cluster
centre, have distances that start away from zero. There is an abrupt change, shown
by the virtually vertical line in the top left panel of Fig.2 around m = 510, when
the centre of the fitted single population switches near to that of Group 2. The
observations in Group 1 become increasingly remote. There is another dramatic
change at around m = 1,150 when Groups 2 and 3 begin to combine. At this point,
the outliers, with distances plotted in the bottom right-hand panel, also become less
remote. An interesting feature of the last part of the search is that there are virtually
no very small Mahalanobis distances; the cluster centre is lying between groups
so that all distances are larger than they should be for a normal population. Only,
towards the very end of the search, are there some small values in Group 2. A QQ-
plot of the squared distances from fitting all observations might, therefore, indicate
that all was not well, without being informative about the precise departure from
assumptions.
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3.3 Cluster Confirmation and Automatic Outlier Detection

We employ an automatic version of the two-stage procedure of Riani et al. (2009) to
calibrate the FS envelopes used to confirm the clusters indicated by the random
start FS. In the first stage we run a search on the data, monitoring the bounds
for all n observations until we obtain a “signal” indicating that observation m",
and therefore succeeding observations, may be outliers, because the value of the
statistic lies beyond our threshold. The hypothesis is that cluster j contains an
unknown number 7; of observations. All that we know is that n; is much less
than n. We therefore need to judge the values of the statistics against envelopes
from appropriately smaller population sizes. In the second part we accordingly
superimpose envelopes for values of n from m' — 1 onwards, until the first time
we introduce an observation we recognize as an outlier. The details of the rule
are in Riani et al. (2009). Here we use an automatic version that, starting from a
set of observations in each tentative cluster, finds mj-, and then proceeds with the
superimposition of envelopes until an outlier is identified and the cluster size n; is
established.

We start with the tentative Group 1. The upper left-hand panel of Fig.4 shows
the first-stage search with the sharp peak we have seen before around m = 400. The
first outlier, the signal, is identified at m" = 244. The automatic procedure therefore
starts with n = 243. These new envelopes, for a much smaller sample size, are
broader than those for n = 2,000 and curve upwards at the end. There is no sign of
any outlier for n = 243, so the sample size is augmented to 244 and the procedure
repeated. Finally, as the bottom left-hand panel of Fig. 4 shows, there is no outlier
when n = 390, although there is one above the 99.9 % envelope at n = 397. The
first group therefore contains 396 observations. A similar procedure for Group 3
leads to a cluster of 768 observations.

The analysis for Group 2 needs more care. Because this group is relatively
dispersed compared to Group 1, an FS starting from Group 2 will absorb many
units from the compact group. We proceed by removing the observations confirmed
as belonging to Groups 1 and 3, leaving 836 units. The left-hand panel of Fig. 5
shows the FS for these units. There is a signal at m = 543. The automatic procedure
accordingly starts at n = 542 and proceeds to n = 661, as shown in the right-hand
panel of Fig. 5. At this point, an outlier is indicated at m = 597, the very last part
of the data trace lying below the lower threshold, indicating the presence of a few
units from a different group. When these four units are removed we have 656 units
in the group.

Figure 6 shows the scatterplot of the final clusters, together with the outliers. The
histogram in the right-hand panel of the figure shows the outliers with the next-to-
darkest colour. Importantly, there are very few outliers in the central part of the plot;
virtually all have been classified as being in either Groups 1 or 3. This illustrates the
general point that it is not possible to distinguish between clusters of observations
and background contamination with the same values of y; and y,.
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Fig. 4 Confirming Group 1. Top left-hand panel, forward plot of minimum Mahalanobis distances
dumin(m) starting with units believed to be in Group 1; signal at m! = 244. Succeeding panels,
distances for n = 243, 390 and 397. 396 units are assigned to the group
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Fig. 5 Confirming Group 2 from 840 unassigned units. Left-hand panel, forward plot of minimum
Mahalanobis distances dp, () starting with units believed to be in Group 2; signal at m' = 543.
Right-hand panel, distances for n = 661. 656 units are ultimately assigned to the group
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Frequency

Fig. 6 Final FS clustering. Left-hand panel, scatterplot of the three groups and background
contamination. Right-hand panel, histogram of classification of y, values: the contamination is
shown in the next-to-darkest colour (blue in the pdf version). For central values of y,, virtually all
these observations have been included in one of the groups

4 Comparisons and Discussion

We now compare our clustering results with those of Garcia-Escudero et al. (2011).
Unlike our method, theirs requires some input parameters. We take these from
the clustering we have found, namely: number of clusters K = 3, percentage
of background contamination (outliers) 9 % and ratio of maximum to minimum
eigenvalue over all clusters 100. With these parameters the agreement between
TCLUST and FS clustering is very strong, the modified Rand index being 0.947.
Table 1 gives a summary of the clustering performance of the two methods, together
with the structure of the simulated data.

Given the choices for TCLUST in the previous paragraph which were derived
from FS clustering, it is not perhaps surprising that both procedures produce clusters
that differ from the data in a similar way. Clusters 1 and 3, which we established
separately, are both larger than they should be, perhaps partly from the absorption of
units from the background contamination; Cluster 0 has an identically low number
of units for both methods. We were concerned that the relatively dispersed Cluster 2
would include some of the units of Cluster 1. In the event, it is slightly smaller than
it should be.

Our results convincingly illustrate the use of the random start FS for discovering
the number and identity of clusters. Refinement by the automatic version of the
multivariate outlier detection method of Riani et al. (2009) leads to clustering in the
presence of disparate clusters and background contamination. The output from the
ES procedure can also be used to provide input to other robust clustering algorithms.
A full two-step procedure, where confirmation follows exploration along the lines
originally described in Atkinson et al. (2004, Sect. 7), could also help to handle
overlapping clusters.
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