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Abstract. We give an example of the use
of the forward search in building a regression
model. The standard backwards elimination
of variables is supplemented by forward plots
of added variable t statistics that exhibit the
effect of each observation on the process of
model building. Attention is also paid to the
effect of individual observations on selection
of a transformation. Variable selection using
AIC is mentioned, as is the analysis of mul-
tivariate data.
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1. Introduction

The forward search is a powerful gen-
eral method for detecting multiple masked
outliers and for determining their effect
on inferences about models fitted to data.
This paper presents a canonical example of
the use of the forward search in building
a regression model. Both the selection of
variables and transformations of the response
are considered. In addition, some mention
is made of methods for the analysis of
multivariate data, including clustering.

Standard statistical techniques are based
on aggregate statistics; in normal theory re-
gression these would be the sufficient statis-
tics for the parameters of the linear model
and for estimation of the error variance. The
books [12] and [3] describe the use of sin-

gle observation deletion diagnostics to explore
the contribution of each observation to infer-
ence. If there are several outliers, these can
sometimes be deleted in turn and their impor-
tance revealed. However, particularly if there
are several similar outliers, or if the data con-
tain unsuspected clusters, the outliers may
be masked; they may not become apparent
until several observations have been deleted.
Unfortunately, the combinatorial explosion of
the number of combinations of observations
that have to be deleted renders such back-
wards deletion procedures impractical. An
example for regression in which deletion pro-
cedures fail to reveal a complicated structure
of outliers is in [4].

The book [18] explores the use of very
robust methods in the detection of outliers.
These methods use estimators based on a sin-
gle carefully chosen subset of the data. On
the contrary, in the forward search we base
estimators on a series of subsets of the data
and so obtain multiple views of any hidden
structure. We monitor the evolution of resid-
uals, parameters estimates and inferences as
the subset size increases, presenting our re-
sults as “forward plots” which show the evolu-
tion of the quantities of interest as a function
of sample size. Use of the forward search is
described by [4] for linear and nonlinear re-
gression, response transformation and in gen-
eralized linear models. Related forward tech-
niques for multivariate data are given in [8].

The forward search is described in more
detail in the next section. In §3 we define
added-variable t statistics for regression coef-
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ficients. Theoretical results and simulations
show that the statistics have the correct t
distribution, independently of the ordering of
the observations in the search. The resulting
procedure for the selection of regression vari-
ables is exemplified in §3.4 with the analysis
of data on ozone concentration in California.

The next section briefly considers the re-
lated plot for transformations using a con-
structed variable. Here the null distribution
is no longer exactly t. The paper concludes
with brief mentions of applications of the for-
ward search in model selection and, in §6, the
analysis of multivariate data.

2. The Forward Search

Details of the forward search for re-
gression are given in Chapter 2 of [4]. The
method typically starts by fitting a small,
robustly chosen, subset of m0 of the n
observations to the data. In the example in
this paper we take m0 = p, the number of pa-
rameters in the regression model. We sample
1,000 subsets to each of which a regression is
fitted by least squares and the median of the
n squared residuals is calculated. We take as
the starting subset S∗(m0) that which yields
the smallest median squared residual. This
is the algorithm for least median of squares
introduced by [17]. For general m we move
forward to a larger subset by ordering the
n squared residuals from the least squares
fit to the subset S∗(m) of m observations
and using the m + 1 observations with the
smallest squared residuals to form S∗(m+1).
In this way we obtain a series of parameter
estimates for p ≤ m ≤ n, which progresses
from very robust at the beginning of the
search to least squares at the end. In the
absence of outliers, the parameter estimates
remain stable as m grows. The search is
such that observations which are far from the
fitted model enter at the end of the search;
these may be outliers, or an unidentified
subset, or they may indicate a systematic
failure of the model. The analysis of the
Box and Cox poison data in §4.4 of [4] illus-
trates the dependence of the order in which
observations enter S∗(m) on the particular

transformation of the response.
There is nothing special about the starting

point of the search. For small problems we
can search over all subsets of size p of the n
observations. Another possibility is to use the
Least Trimmed Squares estimator, for which
again see [17].

During the search we can monitor quan-
tities indicative of model quality or inade-
quacy, such as residuals or the score test for
transformations. In regression we can also
monitor the evolution of s2, the estimate of
the error variance. Because the search orders
the observations by the magnitude of their
residuals from the fitted subsets, the value of
s2 increases during the search, although not
necessarily monotonically. As a consequence,
even in the absence of outliers and model in-
adequacies, the values of the t tests for the
parameters in the model decrease during the
search and are hard to interpret. An exam-
ple is on p. 72 of [4]. In [5] the method of
added variables is used to provide plots of t
tests which are orthogonal to the search. We
exemplify and extend this procedure both for
testing for explanatory variables and for tests
of transformations of the response.

3. An Added Variable t Test

3.1. Added Variables

For all n observations the standard
regression model is written as

y = Qθ + ε (1)

where Q is n × p and the errors ε satisfy the
second-order assumptions with variances σ2.
We estimate the parameter θ by least squares
from the observations in S∗(m).

In order to obtain useful forward plots of
t tests we rewrite the regression model (1) as

y = Qθ + ε = Xβ + wγ + ε, (2)

where γ is a scalar. We in turn take each of
the columns of Q as the vector w (except the
column corresponding to the constant term
in the model). Thus if the columns of Q are
the p− 1 regression variables x2 to xp, we ex-
clude each in turn and reinclude it as w. We

4



perform a forward search using only the vari-
ables in X and then use the well-established
approach of added variables - for example §2.2
of [4] - to calculate the t test for the inclusion
of w in a manner orthogonal to the search.

This methodology leads to an expression
for the least squares estimator γ̂ as a function
of residuals from the regression of y and w on
X. This representation also leads to added
variable plots ([12], p. 44; [3], p. 67) which
can be used to detect an influential observa-
tion. Here we use it for the derivation and
properties of t tests in the forward search.

Let the least squares estimator be

β̂ = (XT X)−1XT y (3)

when the fitted values from this regression are

ŷ = Xβ̂ = X(XT X)−1XT y = Hy (4)

and the least squares residuals of y and w are

e =
∗
y = y − ŷ = (I − H)y = Ay (5)

and ∗
w = (I − H)w = Aw. (6)

The least squares estimator of γ in (2) is

γ̂ =
∗
w

T
e/(

∗
w

T ∗
w) = wT Ay/(wT Aw), (7)

with variance

var γ̂ = σ2/(
∗
w

T ∗
w) = σ2/(wT Aw). (8)

Calculation of the t test for γ also requires s2
w,

the residual mean square estimate of σ2 from
regression on X and w, which can be written
as

(n− p)s2
w = yT Ay − (yT Aw)2/(wT Aw). (9)

The t statistic for testing that γ = 0 is thus

tγ = γ̂/{s2
w/(wT Aw)}1/2. (10)

3.2. Testing γ = γ0

In model building interest is usually
in whether γ = 0, that is whether a variable
should be included in the model. An added
variable formulation can also be used for

testing that γ has the non-zero value γ0,
when the test is

tγ0 = (γ̂ − γ0)/{s2
w/(wT Aw)}1/2. (11)

Under this hypothesis (2) is

y = Xβ + wγ0 + ε. (12)

Subtraction of the vector of offsets wγ0 from
both sides of (2) yields the general model

y(γ0) = y − wγ0

= Xβ + w(γ − γ0) + ε

= Xβ + wγ′. (13)

If γ = γ0, γ′ will be zero and there should
be no evidence of regression of y(γ0) on w.
The added variable calculations of the pre-
ceding section go through with the residuals
e replaced by the residuals

e(γ0) = (I − H)y(γ0) = Ay(γ0). (14)

3.3. Forward Plots of Added-
Variable Tests

We perform one forward search for
each of the p − 1 choices of w in (2), or p
choices if the decision to include the intercept
also needs to be examined. Since we are
regressing on a different set of variables in
each search, we may expect that the obser-
vations will enter S∗(m) in a different order
for each choice of w. However, observations
with outlying values of y will enter at the
end of many or all searches. To summarise
all this information we plot these p−1 values
of the added-variable t statistic in a “forward
plot” as a function of m. In this way we
can see whether individual observations or
groups of observations are causing changes
in our assessment of the significance of the
explanatory variables.

As an example, [4] analyse data from [15]
(pp. 334 & 438) on the time of survival of
108 patients who had a particular kind of liver
surgery. There are four explanatory variables.
The forward plot of added-variable t statis-
tics in Fig. 1 of [5] shows that evidence for
the significance of three out of the four vari-
ables grows steadily during the search, with
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the fourth remaining non-significant. There
is no evidence of the egregious effect of any
observations, either singly or in groups. How-
ever, modifications of the data show how out-
liers can cause a variable to be significant
only when they are included or how the sig-
nificance of a variable can be destroyed, as
viewed by the t statistic calculated at the
end of the search. Despite this masking of
the effect of the altered observations, the for-
ward plot of added-variable t statistics in
their Fig. 3 reveals how these conclusions are
caused by the presence of outliers. We now
consider a more complicated regression exam-
ple.

3.4. Ozone Data

Section 3.4 of [4] present a forward
analysis of data on ozone concentration in
which there are eight potential explanatory
variables. The regression model is chosen
using a standard analysis based on t statistics
when all observations are fitted. A forward
search is then used to explore the properties
of the chosen model. We now supplement
this analysis by use of forward plots of added-
variable t tests.

The data, given by [4] in their Table A.7,
are the first 80 observations on a series of
daily measurements, from the beginning of
the year, of ozone concentration and mete-
orological variables in California. The full set
of 300 observations were used by [11] when
introducing the ACE algorithm. The data
are given in the supporting material for [13],
with a scatter plot of two variables on p. 25
of that book, in which it is clear that ozone
concentration is related to daily temperature,
x1.

We begin by regressing ozone concentra-
tion on the eight explanatory variables. The
forward plot of added-variable t statistics is
in Fig. 1. A surprising feature of the fit-
ted model is that none of the t tests for the
coefficients are significant at the end of the
search, the most extreme value being −1.32,
although the value of R2 is 0.430. One reason
for this seemingly poor fit may be that some
of the variables are highly correlated, leading
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Figure 1: Ozone data: forward plot of
added-variable t statistics; horizontal band
contains 99% of the normal distribution.
There are no significant variables
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Figure 2: Ozone data: QQ-plot of residu-
als. Some lack of normality is evident

to small t values.
The QQ plot of raw residuals in Fig. 2

shows that the assumptions of constant error
variance for regression do not hold. In fact,
[4] find evidence for a log transformation of
the data. We scrutinise the evidence for this
in §4. However, such a transformation is a
priori likely; regression assumes at least ap-
proximately constant error variance, but here
the non-negative responses range from 2 to
24. In addition, Fig. 3.36 of [4] shows evi-
dence of an upwards trend in the residuals
from the fitted model with log y as response,
so they, and we, include a linear term in time
in our model. The observations that lie fur-
thest from this trend are 65, 56, 53 and 31.

There are now nine explanatory variables
including the trend. Fig. 3 is the forward plot
of added-variable t statistics for this model.
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Figure 3: Logged ozone data: forward
plot of added-variable t statistics; horizon-
tal band contains 99% of the normal dis-
tribution. The trend and x5 are most sig-
nificant. The plot reflects overfitting.

The trend and x5 are now significant at the
1% level. In most cases there is an appre-
ciable decrease in significance in the last few
steps of the search; t4 is the most extreme
example, changing from significant to not so.
Each of these curves corresponds to a for-
ward search in which X is different, so the
units may enter in a different order. How-
ever, working backwards, the units that enter
in the last few steps in all, or the majority, of
searches are 65, 56, 31 and 53. These are pre-
cisely the units that were found to be outlying
from the time trend. Our forward plot makes
clear their influence on inferences drawn from
the data.

A second feature of Fig. 3 is the jagged na-
ture of the curves. This is a symptom of over-
fitting; there are so many explanatory vari-
ables that the values of the coefficients are
responding to slight fluctuations in the data.

Initially we used a backwards procedure
to select variables, based on the t statistics
at the end of the search, but augmented by
plots of the added-variable t statistics to en-
sure that this summary value was representa-
tive of behaviour for all S∗(m). Proceeding in
this way, always dropping the least significant
variable, led, in turn, to the removal of x7, x3

and x1. This analysis parallels that on p. 70
of [4], who however do not plot the t statis-
tics. As the result of this process we obtain a
model with a logged response, that includes a
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Figure 4: Logged ozone data: forward
plot of added-variable t statistics; horizon-
tal band contains 99% of the normal dis-
tribution. The least significant variable at
the end of the search is x4, but it is appre-
ciably more significant than x8 for most of
the search.

trend and terms in x2, x4, x5, x6, and x8. The
forward plot of the added-variable t statistics
is in Fig. 4.

At this point x4 has the smallest t statis-
tic, −1.64 and [4] next delete this variable.
However, Fig. 4 shows that there are rapid
changes in the values of the t statistics in the
last few steps of the search as the four ob-
servations we identified as potential outliers
enter S∗(m). In particular, the significance
of x8 is highest at the end of the search, but
still remains within the 99% band as it has
for the whole search. On the contrary, the
statistic for x4 increases steadily in signifi-
cance throughout much of the search, lying
outside the 99% region for several values of
m just before inclusion of the final observa-
tions appreciably reduces its significance. We
accordingly remove x8 from the model.

Fig. 5 is the forward plot of added-variable
t statistics for this model including four ex-
planatory variables and the trend. As the fig-
ure shows, all variables and the trend are ei-
ther significant at the end of the search or
have been so for a part of the search just
before the inclusion of the last observations.
This then is our final model, with a logged
response, the five variables shown in the plot
and, of course, a constant term. This has
been highly significant throughout and so has
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Figure 5: Logged ozone data: forward
plot of added-variable t statistics; horizon-
tal band contains 99% of the normal distri-
bution. All five terms are either significant
at the 1% level at the end of the search or
have been so earlier

not been included on the plots. The final
value of R2 for this fitted model is 0.67, an
appreciable improvement on the value of 0.43
for the first model we fitted.

3.5 Null Distribution of t Statistics

We now consider the exact distribu-
tion of the added-variable t statistics that we
have judged in our plots against the normal
distribution. In our searches we fit the re-
duced model E (y) = Xβ, the residuals from
which are used to determine the progress
of the search. We do not include w in the
model, the choice of observations to include
in S∗(m) depending only on y and X. But
the added-variable test (10) is a function
solely of the residuals

∗
w and

∗
y which are

in a space orthogonal to X. The ordering
of observations using X therefore does not
affect the null distribution of the test statis-
tic. Since, for normally distributed errors,
the estimates γ̂ and s2 are independent, it
follows that the null distribution is Student’s
t on m− p degrees of freedom. Consequently,
for small values of m, the percentage points
of the null distribution forming the envelope
will be slightly greater than those in our
figures. Fig. 1 of [5] shows envelopes for an
example with n = 108 and p = 5. This figure
shows what is known from the properties

of the t distribution, that for degrees of
freedom ν greater than around 20, there is no
practical difference between the normal and
t distributions. The distribution is confirmed
by simulation envelopes from 10,000 forward
searches that are indistinguishable from
those from the t distribution. The conclusion
is that the parallel sided bands in our figures
provide an excellent guide to significance.

4. Transformation of the Response

The ozone data have been analysed
using the logarithm of time. We now test
whether this transformation is appropriate.
The constructed-variable test we use is simi-
lar in form to the added-variable test of §3.1
but, as we see, has different distributional
properties.

The test was introduced by [2] for the
value of the transformation parameter λ in
the Box-Cox [10] family of normalized power
transformations

z(λ) =

{
(yλ − 1)/λẏλ−1 λ �= 0

ẏ log y λ = 0,
(15)

where the geometric mean of the observations
is written as ẏ = exp(Σ log yi/n). In this test
the variable w in (10)is replaced by a con-
structed variable which, provided X includes
a constant, can be written

w(λ) ={
yλ{log(y/ẏ) − 1/λ}/(λẏλ−1) λ �= 0

ẏ log y(0.5 log y − log ẏ) λ = 0.

(16)
In addition, the response y in the regression
model (2) is replaced by the normalized trans-
formed response z(λ). The test of a par-
ticular value λ0 of the transformation pa-
rameter is the t test for the significance of
the constructed variable w(λ0) in a regres-
sion in which the explanatory variables X are
also included. In this application the added
variable formulation of the regression model
arises naturally, with no need to select suc-
cessive columns of Q in (1).

Chapter 4 of [4] gives examples of the use
of forward plots of this constructed variable
test for transformations. Although forward
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Figure 6: Logged ozone data: forward plot
of constructed-variable t statistics. Hori-
zontal bands contains 95 and 99% of the
normal distribution. The curved simulation
envelopes come from 20,000 simulations

plots of the test statistic are easily inter-
preted, the statistic cannot have exactly a
t distribution; the constructed variable (16)
is a function of the response. Thus the re-
sponse and the constructed variable are not
independent and so the conditions for the t
distribution of tγ (10) do not hold. The statis-
tic depends on the properties of the residuals
of these varailes, that is of z(λ0) and w(λ0),
the correlation between which depends on the
projection matrix A. Plots and simulation are
used by [6] to investigate the effect of this pro-
jection on the distribution of the test statistic
in the forward search.

Fig. 6 shows the forward plot of t test for
the constructed variable for the logarithmic
transformation of the ozone data. At the end
of the search this lies in the centre of the con-
fidence region with a value of 0.43. The fig-
ure also shows that the last observations to
enter the search, particularly the last two,
do have a noticeable effect on the values of
the test statistic. However, the significance
of the value is not changed. Also given in the
figure are bootstrap bounds from 20,000 sim-
ulations. The figure shows that the normal
approximation to the distribution hold well
in the centre of the region, but less well at
the end, where what [6] call a “trumpet ef-
fect” is evident.

The simulation of these bands is not com-
pletely straightforward. In regression, to

check the bands of the earlier figures, the ob-
servations can be simulated as coming from
a standard normal distribution, in effect tak-
ing the linear parameters β as zero and the
error variance σ2 as one, the plots depend-
ing only on least squares residuals that are
invariant to these values. However, in sim-
ulating data for checking the transformation
of a particular set of data, we use a model
fitted to the particular transformation that
we want to test. In addition, if outliers are
present, we exclude them from the data used
for parameter estimation. Here, since the last
few observations were not strongly outlying,
we did not exclude them. The simulated en-
velopes in Fig. 6 show the typical breadth at
the beginning of the search which results from
estimation of σ2 from few observations and
so to the statistic having a t distribution on
few degree of freedom. The trumpet effect at
the end of the search is shown by [6] to de-
pend on the value of R2 in the regression. If
this is high, the values of the residuals

∗
z (λ0)

and
∗
w (λ0) are almost independent and the

normal distribution provides a good approx-
imation at the end of the search. If R2 is
low, the distribution is affected by the pres-
ence of y in both z and w. Here, with an R2

value of 0.67 there is some broadening of the
envelopes that makes the value of the statis-
tic less significant. However, the effect is not
enough to change our inferences based on the
normal theory envelopes.

This concludes our analysis of the ozone
data. Since the data are in time order, it
is not surprising that we found it necessary
to include a time trend. A function of day
of the year for all 300 observations was found
by [11] which rises sharply to a peak near day
120 and then declines more slowly to reach
the initial value towards the end of the year.
Initially their function is almost linear and
so matches our linear trend. Over a longer
time period the set of functions chosen for
the effect of time should be cyclical. Sines
and cosines are a natural first choice.

5. AIC and Model Selection

We have augmented the standard proce-
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dure of backward elimination of regression
variables with a forward search for each
considered model. This backward procedure
leaves unexplored the vast majority of models
found by dropping each variable in turn.
The comparison of this large number of
models often uses a model selection criterion
such as AIC [1] in which the increase in the
loglikelihood of the model which comes from
fitting extra terms is penalized by a multiple
of the number of extra parameters. For
regression models this procedure is identical
to use of Mallows Cp [14], a function solely of
an aggregate statistic for each model, in this
case the residual sum of squares. The exten-
sion of our forward procedure to determine
the effect of individual observations on model
selection raises appreciable problems in the
cogent presentation of the large amount of
information that can be generated.

We have treated determination of the re-
sponse transformation as a separate matter
from model building. However, there is of-
ten a relationship between the fitted model
and the best transformation. One possibility
is, for each fitted model, to include the score
test for transformations on the same plot as
the added-variable t tests, in effect combining
Fig. 6 with, for instance, Fig. 5. We would
want the explanatory variables to be signif-
icant, but not the constructed variable. In
model selection inclusion of the constructed
variable for the transformation could be pe-
nalised in the same way as the inclusion of
any other explanatory variable.

6. Envelopes and Multivariate Data

Our analysis of the ozone data relied
heavily on the assessment of observed values
of statistics in the forward search by reference
to normal or t envelopes. For multivariate
data [8] use forward plots of a variety of
Mahalanobis distances to detect outliers and
clusters in data. In some of their examples
the structure of the data is revealed without
the need for reference distributions. If a ref-
erence distribution is necessary, for example
in formal testing for outliers or clusters, the
best procedure depends on the dimensions

of the problem. For small datasets we can
use envelopes from bootstrap simulations to
determine the threshold of statistics during
the forward search. For moderate sized
datasets we can use instead the polynomial
approximations of [7]. For large samples
[9] rescale a paradigmatic curve obtained
by simulation to have the correct sample
size and number of variables. A further
possibility is use of the bounds of [16] derived
from arguments using properties of order
statistics and trimmed estimators.
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