Clustering Continuous or Categorical Data with the Forward Search
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1. Introduction

The normal distribution, perhaps after data transformation, is the most widely used model
for continuous multivariate data. Models for multivariate categorical data are more problematic. In
this paper we give examples of the use of the forward search for clustering data that are either all
continuous or all discrete.

For normal data our procedure uses a series of robust Mahalanobis distances and is related to
outlier detection. Rousseeuw and van Zomeren (1990) and Rousseeuw and Van Driessen (1999) give
examples of the calculation and use of robust Mahalanobis distances in the detection of outliers. The
robust estimates of means and covariances that we use in the calculation of Mahalanobis distances in
this paper come from the forward search, in which subsamples of increasing size are used for parameter
estimation. The forward search in the analysis of multivariate data is given book-length treatment by
Atkinson, Riani and Cerioli (2004), with material on transformations of multivariate data in Chapter 4.

Our analyses rely on forward plots of robust distances. In order to provide sensitive inferences
about the existence of clusters it is necessary to augment such graphs with envelopes of the distributions
of the statistics being plotted. Examples of such envelopes and their use in the forward search for
clustering moderate sized data sets are presented by Atkinson and Riani (2006). Here we present the
detailed analysis of a larger example.

Mahalanobis distances and the forward search are defined in §2, with the extended analysis of
an example with continuous data in §3. Section 4 gives the details for clustering categorical variables,
the main difference being the adoption of Euclidean instead of Mahalanobis distances. Application to
data on soybeans and comparison with other clustering algorithms for categorical data are in §5.

2. Mahalanobis Distances and the Forward Search

The squared Mahalanobis distances for a sample of n v-dimensional normal observations are
defined as

(1) d7,2 = {yl - ﬂ}Tﬁil{yi - ﬂ}a) 1= 17 cees N

where [ and S are the unbiased moment estimators of the mean and covariance matrix of the n



observations and y; is v x 1.
In the forward search the parameters pu and 3 are estimated from a subset of m observations.
From this subset we obtain n squared Mahalanobis distances

(2) d;(m) = {yi — p(m)} "7 (m){yi — ilm)}, i=1...,n

To start the search when the observations are assumed to come from a single multivariate
normal population with some outliers, Atkinson, Riani and Cerioli (2004) pick a starting subset
S*(myp) that excludes any two-dimensional outliers. One search is run from this unique starting point,
with successive searches using larger subsets of observations. When a subset S(m) of m observations
is used in fitting we order the squared distances and take the observations corresponding to the m + 1
smallest as the new subset S(m + 1).

To detect outliers we examine the minimum Mahalanobis distance amongst observations not in
the subset

3) dmin(m) = mind;(m) i ¢ S(m).

If this observation is an outlier relative to the other m observations, this distance will be “large”
compared to the maximum Mahalanobis distance of observations in the subset. All other observations
not in the subset will, by definition, have distances greater than dy,;n(m) and will therefore also be
outliers.

For small datasets we can use envelopes from bootstrap simulations to determine the threshold of
our statistic during the forward search. For moderate sized datasets we can instead use the polynomial
approximations of Atkinson and Riani (2007). For large samples Atkinson, Riani and Laurini (2007)
rescale a paradigmatic curve obtained by simulation to have the correct sample size and number of
variables.

For cluster definition, as opposed to outlier identification, several searches are needed, the most
informative being those that start in individual clusters and continue to add observations from the
cluster until all observations in that cluster have been used in estimation. There is then a clear change
in the Mahalanobis distances as units from other clusters enter the subset used for estimation. This
strategy seemingly requires that we know the clusters, at least approximately, before running the
searches. But we instead use many searches with random starting points to provide information on
cluster existence and definition. Atkinson, Riani and Cerioli (2006) discuss random starts and argue
that one set of simulation envelopes is appropriate whether the membership of S(my) is robustly or
randomly chosen.

3. Example: The Detection of Three Clusters

To illustrate our methodology we look at a large synthetic example with three clusters. We show
how random start forward searches combined with envelope plots of forward Mahalanobis distances
lead to the indication of clusters. We then interrogate the forward plots to obtain an initial definition
of the clusters. We indicate how the information gained from these initial forward searches can be used
as the basis of a definitive clustering. In the example we start with my = v + 1, the smallest possible
size and that which gives the highest probability of getting a subset consisting solely of observations
from one cluster.

We analyse simulated data with three clusters of four-dimensional correlated observations, which
is available at www.riani.it/ISI07. There are 1,000 observations in all. The scatter plot of y; against
yo is in the left-hand panel of Figure 1, with the same symbol for each group. In this view the data
seem to be a single homogeneous sample. The other panels of the scatterplot matrix are similar and
so are not given here.
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Figure 1: Three clusters of correlated normal variables; scatterplots of yo against y;. Left-hand panel,
all three groups; right-hand panel, Groups 1 and 2

There are 250 observations in the first group, 300 in the second and 450 in the third. The right-
hand panel of Figure 1 repeats the scatter plot matrix of the left-hand panel with the third group
omitted. It is clear that the observations in each group are highly correlated and that Group 3 lies
between the other two. Of course, in our analysis we ignore the information about group structure,
or even about the number of groups.

We now run 200 random start forward searches. The resulting forward plot of minimum distances
is in Figure 2.
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Figure 2: Three clusters of correlated normal variables: forward plot of minimum Mahalanobis dis-
tances from 200 random starts with 1%, 5%, 50%, 95% and 99% envelopes. Three clusters are evident.
Trajectories in grey always include units from both groups

The forward searches fall into four classes: those that start in each of the three groups and
those that, from the beginning of the search, include observations from at least two groups. These are
shown in grey on the plot. From around m = 150 the searches with observations from only one group
start to lie outside the envelopes. In general, the plots and envelopes for smaller n and given m rise
above those with larger n as m increases. The curves here are behaving much as those from samples
of slightly less than the known but ignored population values of 250, 300 and 450. However, at around
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Figure 3: Three clusters of correlated normal variables. Left-hand panel: forward plot of number
of unique Mahalanobis distances from 200 random starts; central panel, zoom of plot where clusters
become apparent. Right-hand panel: frequency distribution of values of d;y, (242)

these values the curves suddenly dip below the envelopes as relatively remote observations from the
other groups enter the subset used in fitting. From a little after m = 500 there is a single forward
plot, in which a common mean and common covariance matrix are calculated from the observations
in more than one group. As a result the estimated covariance matrix is slightly too large and the
plotted distances are slightly small; they lie rather low in the envelope in Figure 2, the effect being
most noticeable around m = 900. The approximate values of m at the three peaks (and total number
in the group) are: 230 (250), 290 (300) and 450 (450). Despite the unpromising appearance of the
scatter plots of Figure 1 our method has initially indicated clusters for 97% of the observations.

We now move from Figure 2 to cluster membership. Figure 2 shows that, in the second half
of the search, all 200 searches have converged in the sense that, for each m, there is one common
set of observations S(m) and one value of d i, (m). Once two searches have the same value of S(m)
they will continue to follow the same path, wherever they started from, producing identical values
of dpin(m). The left-hand panel of Figure 3 shows how the number of different values of dpin(m)
decreases with m. Up to m = 37 there are 200 trajectories. The number of trajectories then decreases
rapidly, reaching 1 at m = 527. The central panel is a zoom of the central part of this plot.

We are interested in the subsets S(m) for those trajectories where there is evidence of a cluster
structure. From Figure 2 this is a little less than m = 250. To find the clusters we interrogate Figure 2
near this value to find the subsets giving rise to the larger values of dy,i, (m) in the centre of the search.

The right-hand panel of Figure 3 is a plot of the frequency distribution of the values of di, (242).
There are two large values, which are achieved by respectively 3 and 4 searches; the third largest value
is appreciably smaller, but already contains 132 trajectories. Figure 2 shows that these trajectories
continue to give the third peak around m = 450. The membership of the subsets for these three
groups can be illustrated using ‘entry’ plots.

The entry plot is a way of representing the membership of S(m) as a search progresses. For
each m those observations included in the subset are plotted with a heavy symbol, so that the plot
becomes darker as m increases. Such plots for a single search are discussed in Atkinson et al. (2004,
§7.3.3). Here we need to present information from several searches.

The left-hand panel of Figure 4 is the entry plot for one of the 3 searches with the most extreme
value of dyin(242) in Figure 3. The plot has been truncated at m = 600 since, by this point, units
from all clusters are in the subset and the plot provides no further information on clustering. Since the
searches have converged at m = 242, all will have the same trajectory thereafter, so it does not matter
which of the 3 we choose to plot and we selected randomly from one of these 3 searches to obtain a
typical plot. The panel shows clearly that we have found the trajectories that include observations
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Figure 4: Three clusters of correlated normal variables; entry plots. Left-hand panel, the highest
value of dyin(242) (3 trajectories) in Figure 2; centre panel, the second-highest value of dy;,(242) (4
trajectories) and, right-hand panel, the next highest value of d,;;,(242) (132 trajectories) in Figure 2

from those numbered 1 - 250. Interestingly, the plot shows that up to m = 100 this particular search
also included a number of units from the intermediate Group 3. The centre panel of Figure 4 shows
the entry plot for one of the four trajectories corresponding to the second highest value of d,i, (242)
in Figure 3. Here we have detected the units numbered 251-550 belonging to the second cluster; two
of units, 597 and 659, from the intermediate Group 3 have also been included in the subset. Likewise
the right-hand panel reveals the third cluster of observations numbered 551 - 1,000.

The results shown in Figure 4 clearly indicate how well our cluster identification procedure
works. Since the clusters correspond to the natural order of the units, we are able to check that our
method has achieved what is required. But permutation of the labels of the units, corresponding to
not knowing the cluster membership, makes the plots noninformative.
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Figure 5: Three clusters of correlated normal variables. Three tentative clusters; scatterplots of yo
against y;; small symbols, units not included. Right-hand panel, the intermediate cluster 2 includes
13 units from other groups

A label-free indication of how well our clustering procedure has done can be obtained by looking
once more at the data. The three panels of Figure 5 repeat the scatterplots of Figure 1 for the three
groups of observations identified by the three peaks in Figure 2. In each panel we give the units in the
cluster with the same symbols as before. Units from the group that are not included in the cluster
are shown with small symbols.

Cluster 1 includes 218 of the 250 units of Group 1 and no other units. Cluster 2 contains 233
of the 300 units in Group 2 and the two units 597 and 659 from Group 3 that we saw in Figure 4.
The intermediate Group 3 is the most misclassified; 420 of the 450 units are clustered, but together



with six from Group 1 and seven from Group 2. The slightly small size of the clusters is due to the
overlapping nature of the groups.

This forward process has tentatively identified three clusters. One way to confirm this identi-
fication is to run searches on individual clusters. If the peak for a particular cluster in the forward
plot analogous to Figure 2 occurs when m = n. we include the next few units to enter and then run
a search on these n units, superimposing envelopes for a sample of size n}. If no outliers are found,
we have a homogenous cluster and increment n} to check whether we have failed to include some
units. If outliers are detected, we delete the last observation to enter, reduce the sample size by one
and superimpose envelopes for this reduced sample size. Eventually we obtain the largest group of
homogenous observations containing no outliers. Examples of this procedure are given by Atkinson
and Riani (2007). Atkinson, Riani and Cerioli (2004, Cap. 7) describe a combined forward search in
which each unit is free to enter any one of the, here three, clusters. However, their procedure does
not use envelopes for testing the cluster allocations. Atkinson and Riani (2007) give comparisons with
other clustering methods for smaller data sets. Here k-means completely fails.

4. The Forward Search for Categorical Variables

In this section we show how the random-start forward search algorithm can overcome in a
robust way most of the shortcomings of clustering methods for categorical data. As we have seen,
in a clustering context unusual observations can either be multivariate outliers or inliers that do not
belong to any of the main groups. The latter typology occurs frequently and is of particular concern
with categorical data. Definition (1) is clearly meaningless when we have a sample of n v-dimensional
‘labels’. However, we can use dummy coding to process this categorical information. Write y;; € C (7)
for the observed class of variable j in unit i, where CU) is the set of possible classes for variable j. The

number of such classes is c¢;. Let yl(jc) (]C) = 0 otherwise. Unit ¢ is now represented

by the C' x 1 vector y; = [:cg), ... ,x,gfl), .. fv), e ,x(c“)] with C' =77 ¢;.
We make the mild assumption that y; is a random observation from a population with class prob-

abilities pu = [ugl), . ,,ugcl), e ,uf,l), e ,MS,C”)]’, so that E(yz(jc)) = M§C), force CY and j =1,...,v

=1if y;; = cand y,

Computation of a fully-parametrized Mahalanobis distance like (1) has two main shortcomings in the
present context. First, second-order moments are not able to capture all the dependence structure
among indicator variables. Second, S is now of dimension C' x C, with C typically much larger than
v. A much simpler option is then the squared Euclidean distance

(4) di = d(yi, j Z > - i)

j=1cec()
It is easily seen that (4) is equivalent to the simple matching dissimilarity index when computed on
pais of observations. Furthermore, it can easily be generalized to encompass differential weighting and
correlation among the classes of the same variable (Kurczynski, 1970; Friedman and Meulman, 2004).
The forward search for categorical variables is run following the same rules outlined in §2. At
each step m we compute the n dissimilarities

(5) di(m) = d(u;, i Z 3 (@ - aPm)? i=1,...n,

J=1lcec@
which are used both for progressing and for monitoring the search. We start with a randomly selected
subset of mg = 2 observations, to enhance the probability of starting from only one cluster. To detect
potential clusters, we again look at the forward plot of dyin(m). Other valuable tools for detecting
important cluster features include the forward plots of individuz?l)dissimilarities di(m),i=1,...,n,
C

the entry plot, and the forward plots of sample proportions [i}

; (m), which can be useful for the

interpretation of how clusters evolve along the search.



15

Dissimilarities
10
I

Subset size m

Figure 6: Soybean data. Forward plots of duin(m) for 1000 searches with random starting points.

5. Comparison with the k-modes algorithm: the soybean data set

Some simulation evidence of the good performance of the forward search algorithm for clustering
categorical observations is provided by Cerioli, Riani and Atkinson (2006). Here we compare the
forward search with the k-modes algorithm on a data set that has frequently been used to test clustering
algorithms for categorical data. We analyze the soybean data set, available from the UCI Machine
Learning Repository. It has 47 observations on 21 categorical variables. Each observation is labelled
as one of four soybean diseases: Diaporthe Stem Canker, Charcoal Rot, Rhizoctonia Root Rot, and
Phytophthora Rot. Except for the last disease, which has 17 observations, all other diseases have 10
instances each. We discard the disease information for clustering the soybean data set. Huang (1998)
reports the results for the k-modes algorithm. This technique is sensitive to the order in which the
units are listed, so repeated application to random permutations of the original records is required.
Even in the unrealistic situation where k is known, the algorithm is able to attain complete recovery
of the four disease classes in only 14% of the permutations of the soybean data set. In 36% of these
permutations the result is less than good, with more than 6 misclassified units.

Figure 6 contains the results of 1000 forward searches from randomly selected starting subsets.
For each search the dissimilarity dmin(m) is plotted. Most of the features of this plot are similar to
those depicted in Figure 2. From m = 15 onwards, the searches follow only four different trajectories,
regardless of their starting point. The four distinct trajectories provide clear evidence about the group
structure, information that is not available from the k-modes algorithm. The three peaks at m = 10,
pictured in grey in Figure 6, are very pronounced and correspond to well separated clusters of the same
size. The fourth trajectory, shown in boldface in Figure 6, increases at a more stable pace, an evidence
of a cluster without sharp boundaries. The largest peak at m = 10 is for searches including units
from the second group (Charcoal Rot), numbered from 11 to 20 in the data set. Figure 7 depicts the
structure emerging from the viewpoint provided by this cluster. The left-hand panel shows the forward
plots of individual dissimilarities. The effect of adding units from a different group to a homogeneous
subset is evident just after m = 10, when the first observation from the Diaporthe Stem Canker group
enters into S(m). The right-hand panel is the corresponding entry plot for m = 2,...,15.

The general structure of the data is revealed by the different trajectory shapes in the left-hand
panel of Figure 7. A more accurate dissection can be obtained by looking at the searches that give rise
to the other peaks in Figure 6. Proceeding as in §3, we find that the second largest peak at m = 10 is
for the units in the Diaporthe Stem Canker group, while the third largest peak at m = 10 identifies the
observations with the Rhizoctonia Root Rot disease. The fourth disease corresponds to the remaining
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Figure 7: Soybean data: searches that yield the largest peak in dpyi,(m) at m = 10. Left-hand panel:
forward plots of individual dissimilarities; right-hand panel: entry plot for m = 2,...,15.

stable trajectory in Figure 6. This trajectory has its first peak at m = 18, although di,(17) is only
slightly smaller. The corresponding units in S(18) belong to the Phytophthora Rot group, with the
exception of unit 28, which is the last to join the subset. Observation 28 also belongs to the subset
originating one of the peaks at m = 10, so it may be viewed as a “borderline” unit and need not be
firmly classified, at least at an exploratory stage. We conclude that also in this example our forward
process has identified the number of clusters and has correctly allocated all but one observation, for
which classification is uncertain.
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