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I believe that the authors have made a decent start at designing a potentially useful technique for cluster-
ing in static social networks but that users need to be aware that the technique is far from problem free and
that they must be careful not to overcook the recipe and thereby to overinterpret results. It is my pleasure
to second the vote of thanks.

The vote of thanks was passed by acclamation.

Anthony C. Atkinson (London School of Economics and Political Science) and Marco Riani (Universita di
Parma)

Over the years we have enjoyed both Adrian Raftery’s talks and his flow of publications on model-based
clustering. We would like to compare some results of the use of mclust with a cluster analysis that is
produced by the use of the forward search.
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Fig.9. Old Faithful Geyser data: (a) forward plot of minimum Mahalanobis distances from 300 random starts
with 1%, 50% and 99% envelopes (two clusters are evident); (b) Bayes information criterion plot from mclust,
indicating three clusters
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The forward search for multivariate data is described in Atkinson et al. (2004). In general the search
proceeds by successively fitting subsets of the data of increasing size. For a single multivariate popula-
tion any outliers will enter at the end of the search with large Mahalanobis distances. If the data are
clustered and the search starts in one of the, unfortunately unknown, clusters, the end of the cluster is
indicated when the next observation to be added is remote from that cluster. To find clusters we have
recently (Atkinson et al., 2006a, b; Cerioli et al., 2006) suggested running many searches from randomly
selected starting-points. Some of these start in, or are attracted to, a single cluster; a forward plot of the
minimum Mahalanobis distance of the observations that are not in the fitted subset then reveals the cluster

structure.
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Fig. 10. Old Faithful Geyser data: scatterplot matrices of (a) the two clusters from the forward search (units
marked x could lie in either cluster) and (b) the three clusters that were found by mclust
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As an example we analyse 272 observations on the eruptions of the Old Faithful Geyser taken from the
Modern Applied Statistics in S library (Venables and Ripley, 2002). Azzalini and Bowman (1990) described
the scientific problem. Fig. 9(a), a forward plot of Mahalanobis distances from the forward search, clearly
shows the two groups. Fig. 9(b) is the Bayes information criterion output of mclust from S-PLUS which,
on the contrary, indicates three clusters. Fig. 2 of Fraley and Raftery (2006) for a slightly different set of
geyser data is similar and again indicates three clusters.

We use further forward searches to establish membership of these two clusters and establish the un-
clustered units. A scatterplot of the resulting two clusters is shown in Fig. 10(a). The three clusters that
are found by mclust are in Fig. 10(b). Fuller details of our analysis including further comparisons and
considerations of robustness are in Atkinson and Riani (2007).

We do not want to imply that the imposing edifice, some of whose rooms we have so enjoyably visited
today, is built on sand. But it does seem that there are still some fundamental problems in the foundations
of clustering that need to be resolved.

Isobel Claire Gormley (University College Dublin) and Thomas Brendan Murphy (7rinity College Dublin)
We congratulate the authors on a thought-provoking paper. We feel that the combination of model-based
clustering with latent space modelling is applicable far beyond the proposed application of the analysis of
social network data.

We have recently been developing statistical models for rank data including data from Irish elections
(Gormley and Murphy, 2005, 2006a) and Irish college applications (Gormley and Murphy, 2006b). Two
approaches that we have taken are using mixture models (Murphy and Martin, 2003; Gormley and Murphy,
2005, 2006b) and using a latent space model (Gormley and Murphy, 2006a). The paper that is presented
here provides a combination of both of these modelling approaches which we look forward to applying to
the analysis of rank data.

In our work, we found that model choice is a difficult aspect of the modelling process. The number of
components in a mixture model can be estimated consistently by using the Bayes information criterion
(Keribin, 2000) but we found that the choice of dimensionality in our latent space model is more problem-
atic. We were wondering whether the authors could provide us with insight into the methods for choosing
the dimensionality of the latent space in their social network model.

More recently, we have considered methods for including covariates in our models. One approach that
we have considered is allowing the mixture probabilities to depend on covariates (Gormley, 2006); this
yields a special case of the mixture-of-experts model (Jacobs et al., 1991). This model can be fitted very
easily with minor changes to the mixture modelling framework. In the context of this paper this may
provide an alternative method for achieving homophily by attributes.

Trevor Sweeting (University College London)

I would be interested to hear from the authors whether they have considered using an infinite group cluster
model and, if so, what they would consider to be the relative advantages and disadvantages of such a for-
mulation over their finite group cluster model in the context of network models. There are various possible
Bayesian formulations of infinite group cluster models. A common choice of prior distribution for the
group weights \ arises from a Dirichlet process prior structure for the parameters of the latent positions,
since this structure automatically induces clustering. Specifically, writing ¢; = (m;, s?) the Dirichlet process
mixture (DPM) structure for the latent positions would be specified as

zil¢i ~MVN,(mi, 57 10),
¢5i|Fl’IPF,
F ~DP(Fy,7),
Fo=MVN,(0,w*I;) x o Invx?2.

Here DP(., -) denotes a (d + 1)-dimensional Dirichlet process and F, and ~y are the associated mean and
precision parameters. Now, for g = 1,2, ..., write 6, = (u,, 05) and 6= (6, 0,,...). Using Sethuraman’s
(1994) stick breaking representation of the Dirichlet process, the above specification is equivalent to the
following infinite group version of the authors’ model:
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