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Summary. We suggest a simple robust method for the detection of atypical and influential 
observations in binomial data. Our technique is based on a forward search procedure which orders 
the observations from those most in agreement with a specified generalized linear model to those 
least in agreement with it. The effectiveness of the forward search estimator in detecting masked 
multiple outliers, and more generally in ordering binomial data, is shown by means of three data 
sets. Plots of diagnostic quantities during the forward search clearly show the effect of individual 
observations on residuals and test statistics. These examples reveal the strength of our method in 
showing the structure of the data in a way which is more simple and effective than it would be by 
using standard deletion diagnostic procedures. 

Keywords:Generalized linear models; Graphical methods; Influential observations; Outliers; Robust 
methods 

1. Introduction 

Multiple outliers may strongly affect the generalized linear model fitted to data, as may 
unidentified distinct subsets. But such important observations may be difficult to identify. In 
regression the single-deletion diagnostics described in Cook and Weisberg (1982) and Atkinson 
(1985) may fail owing to 'maslung' if there is more than one outlier. More recent regression 
methods using multiple-deletion diagnostics, such as those of Barrett and Gray (1997) and Haslett 
(1999), may likewise fail either owing to masking or computational requirements and interpret- 
ability if there are too many outliers. For generalized linear models single-deletion methods are 
summarized in chapter 12 of McCullagh and Nelder (1989). These may all be thought of as 
'backward' methods: they start from a fit to all the data and then study the effects of deletion. If 
there is just one outlier, it will be found by the deletion of single cases, but, for the general 
analysis of data, a method is needed which can establish the number of outliers and their effect on 
inferences drawn from the data. 

Our approach, based on a robust and at the same time efficient estimator, uses a forward search 
through the data. Related algorithms have recently been suggested in regression models with 
independent errors, in multivariate analysis and for data transformations (Atkinson, 1994; 
Atkinson and Riani, 1997; Riani and Atkinson, 2000). Our proposal extends this field of research 
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to the case of generalized linear models. In this paper we demonstrate how a greater insight into 
the structure of data can be obtained by starting from a very robust fit to a carefully chosen subset 
of the data and then working forwards, adding observations to the subset used for fitting. 

The results are presented through plots which are both easy to interpret and powerful in 
revealing the structure of the data. In the examples to be presented, it is found that features of 
forward plots can be related to structure in the scatterplot matrices of the data. 

The outline of the paper is as follows. In Section 2 we state our notation and introduce the 
forward search estimator. In Section 3 we apply our method to three examples of binomial data. In 
Section 4 we compare our method with the traditional backward approach. Section 5 contains 
additional comments and conclusions. 

2. Details of the forward search 

2.1. Generalized linear models 
Diagnostic methods for generalized linear models use functions of residuals, as they do for 
regression. The residual sum of squares in regression is replaced by the deviance 

a sum of n non-negative components. The deviance residuals are the signed square roots of these 
components: 

d, = sgn(y, - b,)Jd:, 

where P, is the fitted value of the ith observation when p is the estimate of the vector of p 
parameters in the linear predictor qi  = xTP. Since the dispersion parameter does not have to be 
estimated for binomial data, the value of the deviance can be compared with the x2-distribution on 
n - p degrees of freedom to provide a test of the goodness of fit. The standard work on these 
models is McCullagh and Nelder (1989). A description of diagnostic methods for generalized 
linear models is in chapter 6 of Atkinson and Riani (2000). 

The forward search algorithm described in this paper has three steps: the first concerns the 
choice of an initial subset, the second refers to the way in which we progress in the forward search 
and the third relates to the monitoring of the statistics during the progress of the search. In the 
following subsections we consider these three aspects separately. 

2.2. Step 1: choice of the initial subset 
If the model contains p parameters, our forward search algorithm starts with the selection of a 
subset S$ of p units. Observations in this subset are intended to be outlier free. If n is moderate 
and p << n, the choice can be performed by exhaustive enumeration of all (%)distinct p-tuples; 
otherwise we evaluate the properties of some large number of p-tuples, often 1000. If d , , , ~  is the 
deviance residual for unit i given that observations in S; are used in fitting the model, thi  initial 
subset is such that 

where df,l,s; is the lth ordered squared residual among d- ,,,, i = 1, . . ., n, 
I 

med = p + [y] 
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and [(n - p)/2] denotes the integer part of (n - p)/2. Criterion (2) provides a robust fit to the 
data and is similar to the least median of squares method for regression models with independent 
errors (Rousseeuw, 1984; Hawkins, 1993). Although the breakdown point of this estimator for 
binomial data is unknown, we need only to initialize the algorithm with a subset which does not 
contain atypical observations. 

Remark I .  For binomial data, and other generalized linear models, there is a choice of residuals 
(e.g. McCullagh and Nelder (1989), page 397). In this paper we use deviance residuals because 
they are more stable than Pearson residuals when the fitted probabilities are close to 0 or to 1. We 
found that standardizing the residuals to allow for the effect of different leverages on the variance 
had no observable effect. 

Remark 2. The method is not sensitive to the method used to select an initial subset. For 
example, the least median of squares criterion (2) can be replaced by the least trimmed squares 
criterion in which the sum of the squares of the smallest med residuals is minimized. 

2.3. Step2: adding observations during the forward search 
Given a subset S: of m p observations, the forward search selects the m + 1 units with the 
smallest squared deviance residuals, the units being chosen by ordering all squared deviance 
residuals d:,:,, i = 1, . . ., n. 

The forward search estimator pFsis the collection of maximum likelihood estimators at each 
step of the forward search, 

Prs = (Bss, . - -,Ps:, . . .,P,:), (4) 

where ps:, is the maximum likelihood estimator using the observations in S:. 
In most moves from m to m + 1just one new unit joins the subset. But sometimes two or more 

units join ST as one or more leave. Such an event is unusual, only occurring when the search 
includes one unit which belongs to a cluster of outliers. At the next step the remaining outliers in 
the cluster seem less outlying and so several may be included at once. Of course, several other 
units then must leave the subset. 

The search which we use avoids, in the first steps, the inclusion of outliers and provides a 
natural ordering of the data according to the specified null model. In this approach we use a highly 
robust method and at the same time maximum likelihood (i.e. fully efficient) estimators. The zero 
breakdown point of maximum likelihood estimators, in the context of the forward search, is not a 
disadvantage. The introduction of atypical influential observations is signalled by sharp changes 
in the curves which monitor parameter estimates, t-tests or any other statistic at every step. In this 
context, the robustness of the method does not derive from the choice of a particular estimator 
with a high breakdown point, but from the progressive inclusion of the units into a subset which, 
in the first steps, is outlier free. As a bonus of the suggested procedure, the observations can be 
naturally ordered according to the specified null model and it is possible to know how many of 
them are compatible with a particular specification. Furthermore, the approach suggested enables 
us to analyse the inferential effect of the atypical units (outliers) on the results of statistical 
analyses. For example, the problem of overdispersion in generalized linear models is often 
discussed. In our approach (as we show in one of our examples) we can quantify how many units 
are responsible for this phenomenon. 

Remark 3. The search can often recover from a start which is not very robust. For example, 
Atkinson and Riani (1997) used bivariate box plots to provide an initial subset for multivariate 
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data from which the grossest outliers are removed. The first few steps of the search are very active, 
as other outliers are identified and removed. But the final, informative, third of the forward search 
is insensitive to the precise selection of the initial subset. 

Remark 4. Parameter estimation in generalized linear models is iterative. The search can be 
made faster by using B,:-I 

2.4. Step 3: ordering of the data 
Step 2 of the forward search is repeated until all units are included in the subset. If just one 
observation enters S," at each move, the algorithm provides an ordering of the data according to 
the specified null model, with observations furthest to it joining the subset at the last stages of 
the procedure. Through the joint examination of simple plots, which monitor the effect on the 
statistics of the sequential inclusion of the units, we can obtain great insight into the structure of 
the data. 

One of the most important plots monitors all residuals at each step of the forward search. Large 
values of the residuals among cases that are not in the subset indicate the presence of outliers, as 
do non-smooth changes in the value of the residual deviance. 

To judge the importance of individual variables we find it useful to monitor t-statistics. Non- 
smooth changes in parameter estimates are indications of influential observations, which can also 
be detected through the monitoring of a 'forward version' of the Cook statistic (Cook and 
Weisberg (1982), page 116). When the first influential observation enters the subset, the statistic 
exhibits an upward movement. If the atypical observation belongs to a cluster, the value of the 
statistic is likely to decrease after the inclusion of the first outlier, because the introduction of the 
remaining units in the cluster reinforces the change in parameter estimates. We can also look at 
the values of the leverages for all units in the subset. 

Several link functions g(p)  are available for modelling the relationship between the expected 
proportion of successes p = E ( Y ) / n and the linear predictor q. We use the four given in Table 1, 
where Q is the distribution function of the standard normal distribution. For binary data, i.e. data 
where the response is either 0 or 1, there are advantages in using a fifth link, the inverse sine, the 
properties of which are discussed on page 253 of Atkinson and Riani (2000). 

To analyse the adequacy of the link we can monitor, at each step, the t-statistic for the 
constructed variable tir,where 8,; is the estimated linear predictor and the statistic is calculated 
without changing the iterative weights. In what follows we shall call this statistic the 'goodness- 
of-link test'. 

As our examples show, all these plots must be considered as different instruments which give 
complementary information about the structure of the data. For example, in our third example, a 
considerable change in deviance residuals produces big changes in the curves of the t-statistics. 
This is usually accompanied by a peak in the forward plot of Cook's distance and high leverage 
for the unit which joins the subset. 

Table 1. Link functions used in the analysis 

I Name Linkg(p) = 7 

Logit or logistic 1% { ~ / ( l  - PI} 
Probit @-'(PI 
Complementary log-log log{-log(l - PI} 
Log-log log{ -log(p)} 

/3,;. as the initial estimate for the iterative calculation of 
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3. Examples 

In this section, to show the power of the forward search in showing the structure of the data, we 
analyse three data sets. In the first example attention is focused on the goodness-of-link test for 
three links. The introduction of the last two units causes the value of the statistic to go outside the 
significance bounds for two of the three. In the second example we show the relationship between 
model building and diagnostics: starting from a simple model we are forced to include quadratic 
terms. We can then identify strange observations and lack of structure in part of the data. In the 
third example the focus is on a group of observations which strongly influence the linear predictor 
and suggest the presence of overdispersion. 

3.1. Bliss's beetle data 
Eight groups of around 60 beetles were subjected to eight different doses of insecticide and the 
number of beetles killed was recorded. (The data were originally given by Bliss (1935) and are 
reported in many text-books, e.g. Flury (1997), page 526.) The resulting data are binomial and 
interest is in modelling the relationship between the dose and the probability of death. Fig. 1 
shows plots of deviance residuals (in absolute value) from forward searches for three models in 
which the explanatory variable is log(dose). Although the residuals were calculated only for each 
value of m we have joined them by a continuous line, a visual fiction which improves the 
interpretability of this and the remaining plots. The three links used were the logit, probit and 
complementary log-log. For the logit link observations 1 and 2 are the last two to be included in 
the forward search. The crossing of the lines at the end of the plot in Fig. l(a) shows that the 
inclusion of observations 1 and 2 seems noticeably to affect the ordering of the residuals. With the 
probit link units 3 and 4 (the last two to be included) seem to be different from the rest of the 
data-they are badly predicted by models in which they are not included. However, the residuals 
from the forward search with the complementary log-log-link show no such behaviour-all 
residuals are smaller than 2 throughout, and relatively constant. 

Fig. 2 shows a plot of the score test for the link from the forward search, the order of 
introduction of the observations again being different for the three links. For the logit and probit 
links these plots show evidence of a lack of fit at the 5% level, which is indicated by the statistic 
going outside the bounds in the plot. Although it is the inclusion of the last two observations 
which causes the values of the statistic to become significant, it is clear from the steady upward 
trend of the plots that the lack of fit is due to all observations. On the contrary, the plot for the 
complementary log-log-link shows no evidence of any departure from this model. This plot also 
shows that unit 5, which is the one with the biggest residual for the complementary log-log-link 
and the last to be included in this forward search, has no effect on the t-test for the constructed 
variable. 

This example shows how our procedures can quickly lead to the identification of unsatisfactory 
models and provide checks of models which seem good-there is no evidence of a strong effect of 
any individual observation on any aspect of the fitted complementary log-log-model. Finally, if 
reference is made back to the data, observations 1-4 are those with the lower dose levels. Plots of 
the proportion dead against log(dose) show that the dose-response curve is not symmetrical, a 
feature modelled by the complementary log-log-link, but not by the other two, symmetrical, links. 

3.2. Liver cancer 
Zeltennan (1999) quoted data on the incidence of liver cancer in mice, which we reproduce in 
Table 2, giving the number of mice developing cancer and the total number tested, which forms 
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d I 

Subset size rn 

(c) 

Fig. 1. Bliss's beetle data-absolute values of deviance residuals as the subset size increases from 2 to 8: (a) 
logit link; (b) probit link; (c) complementary log-log-link 

Subset size rn 

Fig.2. Bliss's beetle data-goodness-of-link test from the three forward searches: -, logit link; ---------
probit link; - - - -, complementary log-log-link 



69 Regression Diagnostics for Binomial Data 

Table 2. Liver data 

Obsewation Total 
number 
tested 

Number 
with 

cancer 

Dose Months 
on study 

Obsewation Total 
number 
tested 

Number 
with 

cancer 

Dose Months 
on study 

the binomial denominator. There are eight doses, units unspecified and observations are taken at 
nine unequally spaced times, making 72 observations in all. We use our analysis to demonstrate 
the relationship between model building and the information on individual observations provided 
by the forward search. 

Fig. 3 is a forward plot of the goodness-of-link test for three links when a first-order model is 
fitted i.e. a model in which the linear predictor includes terms in dose and time. Clearly, none of 
the models is adequate: the log-log-link seems to be generally misspecified; the other two links 
deteriorate markedly at the end of the search. The results are confinned by the residual deviances 
in Table 3: all are over 200, to be compared with the x2-distribution on 69 degrees of freedom. 

We next try a full second-order model. The forward plot of the goodness-of-link tests for three 
links is in Fig. 4. Now there is no systematic evidence of inadequacy, although there is an abrupt 
change at the end of the plot for the logit link, caused by the inclusion of observation 67, the last 
to enter in all searches. Table 3 shows that the deviances with all observations are still somewhat 
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Subset size m 

Fig. 3. Liver cancer data, first-order model~oodness-of-link tests for three link functions (observation 67 is the 
last to enter in all three searches): -, logit; --------,complementaly log-log; - - - -, log-log 

Table 3. Liver cancer data: residual deviances and associated degrees of freedom for various models and link 
functions in the last two steps of the forward search 

Resultsfor the following models: 

First order Full second order Second order without interaction 

Degrees of freedom 69 68 66 65 67 66 
Logit 207.0 167.3 140.9 84.74 144.2 89.52 
Complementary log-log 228.7 186.7 148.5 89.21 148.8 89.27 
Log-log 241.9 185.2 133.6 81.98 - -

high. However, the deletion of observation 67 reduces all residual deviances to around the 95% 
point of x2, with the log-log-model fitting best. 

Next we consider whether all the terms in the full second-order model are needed and whether 
observation 67 is important to the significance of the terms. Fig. 5 is a forward plot of the t-
statistics for the three links. Figs 5(a) and 5(b), for the logit and the complementary log-log-links, 
show that the interaction term is not significant. For the log-log-link all higher order terms are 
significant: the non-significant first-order terms therefore must be included. We therefore give 
in Table 3 the residual deviances for the logit and complementary log-log-links without the 
interaction term. Even when observation 67 is dropped, both deviances are slightly larger than the 
95% point of the x2-distribution on 66 degrees of freedom. 

We now try to find out why the logit and complementary log-log-links are showing some sign 
of a lack of fit. Fig. 6 shows the goodness-of-link test for these two models. The effect of 
observation 67 at the end of the search is obvious. But, before this, there is a clear increase in the 
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Subset size m 

Fig. 4. Liver cancer data, full second-order model~oodness-of-link tests for three link functions: -, logit;
- - - - - - - - - ,complementary log-log; - - - -, log-log 

-2 


- z ,---------. 

---- month--- dose2-- monthe2 - doae'month 

10 20 30 40 50 60 70 10 20 30 40 50 60 70 10 20 30 40 50 60 70 

Subset size m Subset size m Subset size rn 
(a) (b) (c) 

Fig. 5. Liver cancer data, full second-order model-forward plots of t-statistics for three link functions: (a) logit; 
(b) complementary log-log; (c) log-log 

statistics, caused by the inclusion of a group of observations, units 11, 20, 48 and 42 working 
backwards in order for the complementary log-log-link. The order is 11, 48, 20 and 42 for the 
logit link. 

The contribution of individual units to the deviance can be assessed from forward plots of 
deviance residuals. Fig. 7 shows such a plot for the complementary log-log-link without the 
interaction term, since the removal of this term has a negligible effect on the deviance. The most 
obvious feature of the plot is the large residual for observation 67, which is never well explained. 
Observation 66 has a large leverage and large residual until it enters, when the residual becomes 
small. Other observations with large residuals are 11, 20, 42, 12 and 48, all of which enter at the 
end of the search. 
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P 
10 20 30 40 50 60 70 

Subset size m 

Fig. 6. Liver cancer data, second-order model without interaction-goodness-of-link tests for two link functions 
showing the effect of outliers at the end of the search (observation 67 is the last to enter): -, logit., ---------, 
complementary log-log 

Subset size m 

Fig.7.  Liver cancer data, second-order model without interaction-forward plot of deviance residuals for the 
complementary log-log-link 

To interpret these results we show, in Fig. 8, two plots of the data against dose. In Fig. 8(a) 
there is a clear structure of linear increase of proportion affected with dose for the higher months 
on study. Observation 67 does not fit this structure. The adjacent unit, 66, has over four times as 
many mice as any other group tested at over 33 months (see Table 2): hence the effect of high 
leverage exhibited in Fig. 7. However, it lies on the general response curve. The other larger 
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0.0 0.5 1.O 1.5 0.0 0.5 1.O 1.5 
Dose Dose 

Fig. 8. Liver cancer data-scatterplots of response against dose: 0,9 months; +, 12 months; A, 14 months; 0, 
15 months; x ,  16 months; 0,17 months; V,18 months;m, 24 months; *, 33 months 

deviance residuals in Fig. 8 are caused by units for which the incidence of cancer is much lower. 
In interpreting Table 2 remember that there is wide variability in the numbers of mice tested. 

The part of the plot for units which have 12, 14 or 17 months on study is shown enlarged in 
Fig. 8(b). These groups contain units having large residuals in Fig. 7. Fig. 8(b) shows that units 11, 
12 and 20 have a proportion of affected mice that is much higher than that of their corresponding 
group. For the group with 17 months on study, units 42 and 48 show proportions of affected mice 
which are respectively much higher and much lower than would be expected from their dose 
levels. In Fig. 7 the residual for unit 42 is always larger than 2 in all steps of the forward search, 
whereas that for unit 48 is always less than -2.5. These are all units which enter at the end of the 
forward search. 

Finally, if we go back to Table 2 we can see that the study seems to have been poorly designed, 
with too many observations at too low times and dose levels. 

A conclusion from this analysis is that observation 67 is a clear outlier and should be omitted. 
The best model we have found is that for the log-log-link with the full second-order model. The 
structure of the outliers is obvious and there is no indication of masking. 

3.3. Toxoplasmosis and rainfall 
We now briefly consider an example in which masking is present. First we show how the forward 
search simply exhibits the structure of the data, then, in the next section, describe how backward 
deletion methods cannot elucidate the structure. The data are taken from Efron (1978) and are the 
proportion of subjects aged between 11 and 15 years testing positively for toxoplasmosis, as a 
function of rainfall (in millimetres), in 34 cities of El Salvador. He fitted a binomial model with a 
logit link to a cubic function in standardized rainfall z. This fit has some strange features: the cubic 
term in the model is significant at the 1% level, whereas some of the lower order terms are not 
significant at all. However, the relationship does not explain all the variation in the data-the 
residual deviance is 62.63 on 30 degrees of freedom, which is significant evidence of a lack of fit 
at a level of 0.043%, if asymptotic theory is an adequate guide. 

Fig. 9 is the plot of residuals from the forward search: it is very different from Fig. 7 in which 
most residuals, apart from that for observation 66, were virtually constant throughout the forward 
search. Here there is a large amount of change towards the end of the search, which is where we 
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I 1 

Subset size m 

Fig. 9. Toxoplasmosis data-forward plot of deviance residuals 

expect outliers to enter. Fig. 9 clearly shows that four units (34, 14, 19 and 23) have very large 
negative residuals until m = 30. But some of the signs of these residuals change when 
m = n = 34: units 23 and 34 have positive deviance residuals of 1.39 and 0.13, whereas unit 19 
has a small negative deviance residual of -0.37. In the upper part of Fig. 9 there are three units 
(30, 27 and 29) which show deviance residuals that are always above 3 in the central part of the 
forward search. However, in the last step of the forward search unit 29 has a deviance residual 
which is equal to only 0.22. We may thus expect some problems for backward methods due to 
masking. What these are will be shown in the next section. Finally, in Fig. 9 we can see two units 
(7 and 21) whose negative residuals (less than -2) remain virtually constant in all steps of the 
forward search. 

To interpret these results we give in Table 4 the order in which the forward search causes the 
observations to enter the fit. Also given is the estimate of the dispersion parameter 6,: = 

Table 4. Toxoplasmosis data: last steps of the for- 
ward search - subset size, observation introduced 
and estimate of dispersion parameter @J 

Subset Observation Estimate Ji: 
size m 

26 7 0.76 
27 29 0.92 
28 27 1.05 
29 21 1.33 
30 30 1.64 
31 23 1.72 
32 19 1.76 
33 34 1.73 
34 14 1.94 
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X$/(rn - p) where Xi, is the observed value of the Pearson x2 goodness-of-fit statistic. Of 
course, for binomial data: we hope for a value around 1 for 6. 

We notice that the observations entering at the end of the search are those that are identified as 
different by the forward plot of residuals. To see whether these observations affect inferences 
drawn from the model, we studied forward plots of a number of statistics. The plot of the 
goodness-of-link test shows that the exclusion of observations 14, 34 and 19 causes the statistic to 
change from 1.58 to -1.92. Monitoring the forward plot of the Cook statistic indicates that the 
addition of observation 23 causes a significant change in the parameter values. These effects on 
parameter estimates are most easily seen by looking at the plot of the individual t-statistics in 
Fig. 10. The statistics for the linear and cubic terms (b, and b,) remain sensibly unchanged for 
most of the search. But those for the intercept (bo) and the quadratic term (b,) change sign and 
become less significant in the last five steps. These results have a straightforward interpretation if 
we go back to the data as plotted in Fig. 11, in which the diameter of the dots is proportional to the 
binomial denominator raised to the power 0.8. As a referee has commented, the observations from 
cities where the denominator is large do not suggest a strong relationship between toxoplasmosis 
and rainfall. However, the deviance explained by fitting the cubic model is 11.6, rising to 13.8 if 
observations 23, 19, 14 and 34 are removed values which are significant at the 1% level. The full 
curve shows the cubic fit using all data, and the curve with short dashes shows a cubic fit without 
observations 23, 19, 14 and 34 (the last four in the forward search). These four observations form 
a group with the highest rainfall and are clearly all influencing the shape of the cubic curve in the 
same way, lessening the curvature at the second point of inflection. The first of the four to be 
included is 23. Once it has been included the other points do not greatly change the shape of the 
curve. When all are included observation 34 is virtually on the fitted curve. But when m = n - 4 
this observation has a deviance residual of -12.9. This dramatic change can be seen in Fig. 9. The 
last observation to be considered is 30, which enters immediately before this group of four. The 
effect resulting from its additional deletion, shown by the curve with long dashes in Fig. 11, is to 

Subset size rn 

Fig. 10. Toxoplasmosis data-forward plot of t-statistics for explanatory variables: -, constant; ---------, z; 
- - - - z2;-- , z3 
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Rainfall (mm) 

Fig. 11. Toxoplasmosis data-proportion testing positively versus rainfall for 34 cities in El Salvador (observed 
proportions are plotted with diameter proportional to the binomial denominator to the power 0.8): -, fitted 
cubic function using all the observations (m  = 34); ---------,fitted cubic function when m = 30; - - - -, fitted 
cubic function when m = 29 

reduce the curvature of the fitted cubic model. Observations 5 and 10 do not have a similar effect, 
but they are for two and 10 subjects, whereas observation 30 is from 75. 

The deletion of these five observations has other beneficial effects. The residual deviance is 
36.42 on 25 degrees of freedom, which is still perhaps some evidence of a lack of fit, if asymptotic 
theory is a good guide, but a decided improvement on the previous value. The deletion of one 
further observation gives a value of 1.05 for $$8, removing any evidence of that overdispersion 
which caused Firth (1991) to wonder whether the model was appropriate. Of course, to remove 
observations solely to achieve a small deviance is not likely to lead to a correct model for the data. 
But our results show how many aspects of model building and criticism come together once the 
observations have been ordered by the forward search. As one further example, the t-statistics for 
the parameters in Fig. 10 are reasonably stable up to m = 29. Our analysis was sensibly unchanged 
if we used the complementary log-log-link. 

4. Comparison with backward methods 

The structure that we have discussed was found in the data by a forward search. An important part 
of our argument in favour of our method is that the conventional backward methods using deletion 
diagnostics can fail in the presence of the masking that is visible in Fig. 9. We accordingly 
compare our results with those of Lee and Fung (1997) based on deletion diagnostics and show 
that their method fails to detect the group of four influential observations. A typical starting-point 
for such a deletion approach is the normal plot of deletion residuals shown in Fig. 12, which are 
the signed square roots of the changes in deviance as each observation is deleted in turn. In order, 
the five observations with largest absolute residuals are 27, 30, 14, 21 and 28. These observations 
were investigated by Lee and Fung for outlyingness and influence. As the plot of the related 
deviance residuals in Fig. 9 shows, there is appreciable evidence of masking, shown by the rapid 
change in the plot in the final stages of the forward search. Fig. 12 corresponds to a normal plot of 
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Quantiles of Standard Normal 

Fig. 12. Toxoplasmosis data-normal plot of deletion residuals with simulation envelope 

the residuals in Fig. 9 when m = 34, with allowance for individual leverages. It is therefore not at 
all surprising that Lee and Fung failed to identify the group of four influential observations which 
we found for high rainfall. In contrast, the points that they investigated form no particular pattern 
in plots of the data. A final feature of Fig. 12 that is of interest is that the plot on its own looks 
curved, but arguably not too far from what might be expected. However, the superimposition of an 
approximate 90% envelope from 100 simulations shows that there is some systematic lack of 
fit, with too many negative residuals. Although the backward method alerts us to the fact that 
something might be wrong, it does not provide any suggestions about what needs to be improved. 
It seems to us that this comparison of the forward and backward analyses provides a confmnation 
of the power of our procedure. 

5. Comments and conclusions 

During the last few years there have been attempts to develop robust algorithms for generalized 
linear models. Stefanski et al. (1986) proposed bounded influence estimators which minimize 
certain functionals of the asymptotic covariance matrix. Bedrick and Hill (1990) developed tests 
for single and multiple outliers assuming a logistic slippage model. Morgenthaler (1992) explored 
the consequences of replacing the L,-norm by the L,-norm in the derivation of quasi-likelihoods. 
Christmann (1994) suggested transforming the data for large strata, followed by the application of 
the least median of squares algorithm to the transformed data. 

The forward search algorithm described here is a powerful and practical high breakdown 
method for generalized linear models. We stress that the forward analysis is not only an alternative 
way of looking at the data but also leads naturally to the definition and calculation of a robust and 
fully efficient forward search estimator. The presentation of the results through plots provides a 
powerful method for revealing the structure of the data. 

For large samples (e.g. n > 1000), slight variations of the method must be considered. For 
example, after choosing the best subset of dimension p we can obtain the k units (e.g. k = n/2) 
with the smallest deviance residuals. The forward search estimator and the monitoring of the 
statistics can start at step k. Another alternative is initially to divide the data into smaller 
subgroups and then to amalgamate the best initial subset from each subgroup. This technique is 
related to that of Woodmff and Rocke (1 994). 
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In this paper we have considered the analysis ofbinomial data. Applications of our forward search 
to regression and the analysis of transformations are described in Atkinson and Riani (2000). Pro-
grams for our method are available at http :/ / stat. econ. unipr .it /riani /ar. The data 
fortheexamplesinthispaperareonhttp: //stat .econ.unipr. it/riani/statistOl. 
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