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A ROBUST AND DIAGNOSTIC INFORMATION
CRITERION FOR SELECTING REGRESSION MODELS

Anthony C. Atkinson* and Marco Riani**

We combine the selection of a statistical model with the robust parameter es-
timation and diagnostic properties of the Forward Search. As a result we obtain
procedures that select the best model in the presence of outliers. We derive distri-
butional properties of our method and illustrate it on data on ozone concentration.
The effect of outliers on the choice of a model is revealed. Although our example is
for regression, the connection with AIC is stressed.
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1. Introduction

Professor Akaike’s 1974 paper on model selection (Akaike (1974)) is one of
the most highly cited papers in statistics and control engineering. The basic
idea, certainly familiar to virtually all readers of our paper, is that in choosing
between non-nested statistical models there needs to be a trade-off between the
improved fit of a larger model and the increased number of parameters. Akaike’s
elegant solution penalizes the maximized log-likelihood by twice the number of
parameters in the model. However, the loglikelihood is an aggregate statistic,
a function of all the observations. AIC provides no evidence of whether or how
individual observations or unidentified structure are affecting the model choice.
It is the purpose of the present paper to use the forward search, a graphics rich
robust procedure, to reveal the effect of such sources on model choice.

We focus on regression models, our paper combining regression diagnostics
with model selection. In the next section we introduce AIC and relate it to
Cp. The use of whole-sample Cp for choice of a regression model is exemplified
in Subsection 2.2 for 80 observations on ozone concentration. Our diagnostic
analysis begins in Subsection 3.1 where we introduce the forward search. In
Subsection 3.2 we derive versions of AIC and Cp that are calculated from subsets
of the data and illustrate their properties. Section 4 considers the distribution
of Cp in the forward search while Section 5 applies our procedure to the ozone
data. We find that the choice of model is highly sensitive to the presence of two
outliers. Some discussion of the literature is in Section 6.
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2. Aggregate statistics

2.1. AIC and Cp

The loglikelihood of n observations y, a function of the p × 1 vector of pa-
rameters β is L(β; y). If β̂ is the maximum likelihood estimator of β, AIC is
defined as

AIC = −2L(β̂; y) + 2p.(2.1)

That model is selected for which AIC is a minimum, a choice that is unaffected
by any constants depending on y and n.

We are interested in the special case of the AIC for the linear multiple re-
gression model y = Xβ + ε, in which X is an n × p full-rank matrix of known
constants, with i-th row xTi . The normal theory assumptions are that the errors
εi are i.i.d. N(0, σ2). The residual sum of squares from fitting this model to the
data is Rp(n) and, for known σ2,

AICσ = n log(2π) + n log σ2 +Rp(n)/σ2 + 2p.(2.2)

If, as is usually the case, σ2 is not known, the maximum likelihood estimator is

σ̂2 = Rp(n)/n.(2.3)

With this internal estimate of σ2 the criterion (2.2) becomes

AICI = n log(2π) + n log{Rp(n)/n} + n+ 2p,(2.4)

a form often used in the selection of non-nested time series models with normally
distributed errors. Some references are in §9 of Tong (2001). Venables and
Ripley (1997, p. 221) use a Taylor series expansion to show the close relationship
between (2.2) and (2.4). In these derivations we have, unusually, included all
constants as we shall be interested in comparing model selection criteria across
different subsets of m < n observations.

In the selection of regression variables σ2 is estimated from a large regression
model with n ×K matrix X+, K > p, of which X is submatrix. The unbiased
estimator of σ2 comes from regression on all K columns of X+ and can be written

s2 = RK(n)/(n−K).(2.5)

With this estimate the criterion (2.2) is

AIC = n log(2π) + n log{RK(n)/(n−K)}(2.6)

+ (n−K)Rp(n)/RK(n) + 2p.

In the standard application of model selection procedures both n and s2 are
fixed, the variable factors being the value of p and the regressors that are being
considered. Then choice of the model minimizing (2.6) is identical to the choice
of model minimizing

Cp = Rp(n)/s2 − n+ 2p = (n−K)Rp(n)/RK(n) − n+ 2p.(2.7)
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One derivation of Cp (Mallows (1973)) is that it provides an estimate of the mean
squared error of prediction at the n observational points from the model with p
parameters provided the full model with K parameters yields an unbiased esti-
mate of σ2. Then E{Rp(n)} = (n−p)σ2, E(s2) = σ2 and E(Cp) is approximately
p.

Models with small values of Cp are preferred. Statements are often made that
those models with values of Cp near p are acceptable. In Section 4 we consider
the distribution of values of Cp and try to make this statement more precise. We
stress that, in our opinion, the mechanical use of Cp is to be avoided. Any model
selected by use of Cp should be subject to customary statistical checks, such as
tests of the significance of the included terms.

2.2. The ozone data
As an example with sufficiently many potential explanatory variables to be

interesting, we look at the data on ozone concentration used by Breiman and
Friedman (1985) when introducing the ACE algorithm. These are a series of
300 daily measurements, from the beginning of the year, of ozone concentration
and eight meteorological variables in California. Atkinson and Riani (2000, §3.4)
analyse the first 80 observations. They find that the data should be transformed
by taking logs and that a time trend should be considered as one of the explana-
tory variables. Together with the constant term, we therefore have K = 10.

Figure 1 is a Cp plot for the ozone data in which the smaller values of Cp for
subset models are plotted against p. It shows a typical shape. Initially, for small
p, all models have values of Cp much greater than p, and so these small models
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Figure 1. Cp plot for the ozone data. The combination of the two best models for p = 6 yields

the best model for p = 7.
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are not satisfactory. The best relatively small models are for p = 6, and 7. All
models we will discuss include a constant and the time trend. The model with
smallest Cp for p = 6 also includes variables 2, 5, 6 and 8. This is the model
selected by Atkinson and Riani (2000, p. 70). In the second-best model for p = 6,
variable 4 replaces variable 6, giving the model including variables 2, 4, 5 and 8.
The best model for p = 7 includes both these variables. Good models for larger
values of p add further variables to the model for p = 7, giving rise to larger
values of Cp.

The model with minimum Cp in Fig. 1 is for p = 7 and includes the constant,
the trend and variables 2, 4, 5, 6 and 8. However, this model may be too large,
since the t values for x4 and x6 are respectively −1.64 and 1.71. Our purpose is to
determine how the choice of model is influenced by outliers or other unsuspected
structure.

3. A robust approach

3.1. The forward search
Individual outliers and influential observations in regression models can be

detected by the single deletion methods described in the books of Cook and
Weisberg (1982) and of Atkinson (1985). However, these procedures may fail
to reveal multiple outliers, due to masking in which the outliers so affect the
parameter estimates as to seem part of the main body of the data. Atkinson
and Riani (2000) give several examples of the failure of deletion diagnostics and
introduce instead the Forward Search. This method moves from fitting small,
robustly chosen, subsets of the data to fitting all n observations in such a way
that unsuspected structure is revealed and outliers, if any, enter the subset to be
fitted towards the end of the search.

More specifically, the forward search for a single regression model fits subsets

of observations of size m to the data, with m0 ≤ m ≤ n. Let S
(m)
∗ be the subset

of size m found by the forward search, for which the matrix of regressors is
X∗(m). Least squares on this subset of observations yields parameter estimates
β̂∗(m) and s2

∗(m), the mean square estimate of σ2 on m− p degrees of freedom.

Residuals can be calculated for all observations including those not in S
(m)
∗ . The

n resulting least squares residuals are

ei∗(m) = yi − xTi β̂∗(m).(3.1)

The search moves forward with the augmented subset S
(m+1)
∗ consisting of the

observations with the m + 1 smallest absolute values of ei∗(m). The estimates
of the parameters are based on only those observations giving the central m
residuals.

To start we take m0 = p+ 1 and so search over subsets of p+ 1 observations
to find the subset, out of 3,000, that yields the least median of squares (LMS)
estimate of β (Rousseeuw (1984)).
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3.2. Forward AIC and forward Cp

The information criteria (2.6) and (2.7) for all observations are functions of
the residual sums of squares Sp(n) and SK(n). For a subset of m observations
we can then define the forward values of these criteria as, for example,

Cp(m) = (m−K)Rp(m)/RK(m) −m+ 2p.(3.2)

For each m we calculate Cp(m) for all models of interest. However, some care is
needed in interpreting this definition. For each of the models with p parameters,
the search may be different, so that the subset S∗(m) will depend on which model
is being fitted. This same subset is used to calculate RK(m), so that the estimate
s2 in (2.5) may also depend on the particular model being evaluated as well as
on m.

To show the similarities and differences between Cp(m) and the analogous
forward version AIC(m) of AIC, we give forward plots of these two quantities for
the wool data of Box and Cox (1964). After log transformation of the response,
the data are adequately described by a first-order model in the three factors x1,
x2 and x3. To these we add a fourth variable which is white noise and so has no
effect on the model.

The left-hand panel of Fig. 2 shows the forward plot of AIC(m) for the four
four-parameter models, that is three variables and a constant. The values for the
model with x1, x2 and x3 are always the smallest and increase smoothly with m.
This is clearly the preferred model. The right-hand panel of the figure repeats
the forward plot now for the values of Cp(m). The ordering of the models and
the detailed behaviour of the two sets of curves are, of course, the same, since

AIC(m) − Cp(m) = m log(2π) +m log{RK(m)/(m−K)} +m.(3.3)

However, the values of Cp(m) are the more easily interpreted since, as with Cp,
the expected value of the statistic for a satisfactory model is around p, a result
we demonstrate in Section 4. This is indeed the virtually constant value for the
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Figure 2. Wool data: three explanatory variables plus 1 noise variable. Forward plots of

AIC(m) and Cp(m) for p = 4.
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model with x1, x2 and x3. There are no jumps in the curve and so no indication
of outliers that affect the choice of this best model. As we shall see, the curves
for values of Cp(m) for the ozone data in Fig. 4 are appreciably less smooth.

Although the interpretation of the right-hand panel of Fig. 2 seems straight-
forward, in more complicated examples with many variables, it is helpful to
provide information about the distribution of the statistic. We investigate the
distribution of Cp(m) in the next section. The results are much simpler than
those for AIC(m) so, for the rest of the paper, we focus our attention on the
properties and use of Cp(m).

4. The distribution of Cp in the forward search

The distribution of Cp is given, for example, by Mallows (1973) and by
Gilmour (1996). From (2.7) we require the distribution of the ratio of two nested
residual sums of squares. It is straightforward to show that the required distri-
bution is

Cp ∼ (K − p)F + 2p−K, where F ∼ FK−p,n−K .(4.1)

Gilmour comments that when n−K is small, E(Cp) can be appreciably greater
than p. In our example, with n = 80, this is not the case. In interpreting
Gilmour’s results, note that his k is the number of regressors, not the number of
parameters, in the full model, so that our K = k + 1.

These results apply to Cp which is calculated from the full sample. However,
in the forward search withm < n we take the centralm residuals (3.1) to calculate
the sums of squares RK(m) and Rp(m). These sums of squares are accordingly
based on truncated samples and will have smaller expectations than those based
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Figure 3. Comparison between empirical (solid line) and theoretical (dotted line) envelopes

for Cp(m) based on the F distribution (4.1) when n = 80, p = 6 and K = 10: 1%, 10%, 50%,

90% and 99% quantiles.
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on a full sample of m observations. Specifically E{s2(m)} < σ2. We conducted a
small simulation study to check the effect of this truncation on the distribution
of Cp(m).

Figure 3 shows a forward plot of the empirical distribution from 10,000 sim-
ulations of 80 observations with p = 6 and K = 10. We give the empirical 1%,
10%, 50%, 90% and 99% points as n varies from 12 to 80, together with those
calculated from the full sample distribution of Cp defined in (4.1). Amazingly,
the distribution of Cp(m) during the search is indistinguishable from that of the
full sample statistic for sample size m. Accordingly, we can use (4.1) directly to
provide envelopes for our forward plots.

5. Forward model selection for the ozone data

5.1. Forward Cp plots
We examine model selection by a forward plot for each plausible value of p.

From Fig. 1 it seems that p = 6 is a good choice, that is a constant, the trend
and four explanatory variables. We also check other values of p.

Figure 4 shows the forward plots of Cp(m) from m = 59 for p from 4 to 7,
including only those models that have small values of Cp(m) in this region of
the search. These plots confirm our earlier choice of p = 6. However, a feature
for all values of p is that many of the curves increase in the last two steps. The
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Figure 4. Ozone data: forward plots of Cp(m) when p = 4, 5, 6 and 7. The last two observations

to enter the subset have a clear effect on model choice.
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plot for p = 6 shows that, when m = 78, minimising the value of Cp leads to the
choice of model with terms in x2, x4, x5 and x6, although this is only the third
best model of this size when m = n. This plot clearly and elegantly shows how
the choice of model is being influenced by the last two observations to enter the
forward search.

5.2. Outlier detection
The last two observations to enter S∗(m) are 56 and 65; these also seem to

be outlying in the plot of residuals against trend in Figure 3.36 of Atkinson and
Riani (2000). To detect outliers we calculate the deletion residual for the n−m

observations not in S
(m)
∗ . These residuals are

ri∗(m) =
yi − xTi β̂∗(m)√

s2∗(m){1 + hi∗(m)}
=

ei∗(m)√
s2∗(m){1 + hi∗(m)}

,(5.1)

where hi∗(m) = xTi {X∗(m)TX∗(m)}−1xi; the leverage of each observation de-

pends on S
(m)
∗ . Let imin denote the observation with the minimum absolute

deletion residual among those not in S
(m)
∗ , that is

imin = arg min
i/∈S(m)

∗

|ri∗(m)|.

To test whether observation imin is an outlier we use the absolute value of the
minimum deletion residual

rimin∗(m) =
eimin∗(m)√

s2∗(m){1 + himin∗(m)}
,(5.2)

as a test statistic. If the absolute value of (5.2) is too large, the observation

imin is considered to be an outlier, as well as all other observations not in S
(m)
∗ .

Riani and Atkinson (2007) give further details and discuss the calculation of
approximations to the distribution of the test statistic (5.2). We use simulation
to find envelopes for the small value of n for the ozone data.

The left-hand panel of Fig. 5 shows a forward plot of the minimum deletion
residual for all 80 observations when the model contains variables 2, 4, 5 and 6,
together with 1%, 50% and 99% simulation envelopes. The last two observations
are clearly revealed as outlying. If they are removed and the envelopes recalcu-
lated for n = 78 we obtain the plot in the right-hand panel of Fig. 5. There is
no evidence of any further outlying observations.

We now return to model selection. Figure 6 gives the last part of the forward
plot of Cp(m) for n = 78 when p = 6, together with 2.5%, 50% and 97.5%
quantiles calculated from (4.1). We give the curves only for those models that
are one of the three best at some point for the last ten values of m. The model
with variables 2, 4, 5 and 6 is clearly the best; unlike any other model its value
of Cp(m) lies in the lower half of the distribution for m > 63. There are many
alternative six-parameter models with values of Cp(78) lying below the 97.5%
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Figure 5. Ozone data: monitoring the minimum deletion residual (5.2). Left-hand panel,

n = 80, right-hand panel, n = 78. There are two outlying observations.

Subset size

60 65 70 75 80

2
4

6
8

10
12

14

Time,x1,x4,x5,x6

Time,x2,x3,x4,x5

Time,x2,x4,x5,x6

Time,x3,x4,x5,x6

Time,x4,x5,x6,x7

Time,x4,x5,x6,x8

2.5%

50%

97.5%

Figure 6. Ozone data without outliers: forward plots of Cp(m) when p = 6, together with
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quantile. Plots for five such are shown in Fig. 6. All however fall in the upper
half of the distribution.

It is also interesting to consider the effect of deleting observations 56 and
65 on the properties of the final model. Table 1 lists the t-statistics for the six
terms in the model and their significance both for all observations and for the
78 observations after deletion of the two outliers. When n = 80 neither x4 nor
x6 are significant when they are both in the model. But deletion of the outliers
causes the variables to be jointly significant, one at 2% and the other well past
the 1% level.

We have based our argument on the plot for p = 6. In Fig. 7 we reproduce
the Cp plot of Fig. 1 for all values of p after the two outliers have been removed.
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Table 1. Ozone data: effect of deletion of outliers on significance of terms in model with

variables 2, 4, 5 and 6.

All 80 observations n = 78

Term t p-value t p-value

Constant −4.83 0.000 −5.74 0.000

Time 7.16 0.000 8.99 0.000

x2 −3.34 0.001 −2.57 0.012

x4 −1.79 0.077 −3.01 0.004

x5 5.75 0.000 6.80 0.000

x6 1.60 0.114 2.39 0.019

R2 0.67 0.74

p=number of explanatory variables
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Figure 7. Cp plot for the ozone data after deletion of the two outliers. One model with p = 6

is now clearly best. In comparison, the best model in Fig. 1, which had p = 7, was less sharply

revealed.

The comparison is instructive. Now the model with variables 2, 4, 5 and 6 has
an appreciably smaller value of Cp than the next best six-parameter model. In
addition, this value is less than that for the best seven-parameter model. By
detection and deletion of the outliers we have not only changed the selected
model but have sharpened the choice of the best model.

The distributional results in Fig. 7 indicate some other potential models.
Whether we need to be concerned to have more than one model depends on the
purpose of model fitting. If the model is to be used to predict over the region
over which the data have been collected and the system is unlikely to change, so
that the correlations between the explanatory variables remain sensibly constant,
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then any of these models will give almost equally good predictions. If however
the relationships between the variables may change, or predictions are needed
in new regions where data are sparse or non-existent, then the outcomes of all
satisfactory models, as selected here by Cp(m), must be taken into account. The
possible effects of climate change on ozone concentration in the Californian desert
indicate that the consequences of several well-fitting models should be explored.

6. Literature

There is such a vast literature on AIC and Cp that choice of a few references
is invidious. However, Shibata (1976) shows that use of minimum AIC leads, on
average, to overestimation of model order. Atkinson (1980) explores the use of
other values of the penalty multiplier than the 2 of (2.1). Hurvich and Tsai (1989)
suggest a bias correction that improves the probability of selection of the model of
correct order. A Bayesian model choice criterion, known as BIC, with a penalty
function that increases as logn, was introduced by Schwarz (1978). Kuha (2004)
commends the use of both AIC and BIC in the same model selection problem
and gives a list of recent references. Whether AIC, BIC or some other penalty
multiplier is used, the results of Subsection 3.2 show calculation of the forward
version of the criterion to be straightforward.

There is appreciably less work on the effect of individual observations on
model selection. Kitagawa (1979), for unstructured samples, uses AIC to make
the choice between models with outliers and those without. Weisberg (1981)
breaks down the value of Cp to give the contribution of each observation and
Ronchetti and Staudte (1994) use robust parameter estimates to yield an adjusted
form of Cp that, in the analysis of the ozone data leads to selection of an eight-
parameter model. Unlike our method that uses a series of parameter estimates to
evaluate the effect of individual observations on model choice, these procedures
are all based on a single estimate, robust or otherwise.

It is a great privilege to salute Professor Hirotugu Akaike on the occasion of
his 80th birthday and to celebrate both the man and his scientific achievements.
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