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S u m m a r y  

A statistical analysis using the forward search produces many graphs. For 
multivariate data an appreciable proportion of these are a variety of plots of 
the Mahalanobis distances of the individual observations during the search. 
Each unit, originally a point in v-dimensional space, is then represented by 
a curve in two dimensions connecting the almost n values of the distance 
for each unit calculated during the search. Our task is now to recognise 
and classify these curves: we may find several clusters of data, or outliers 
or some unexpected, non-normal, structure. We look at the plots from five 
data sets. Statistical techniques include cluster analysis and transformations 
to multivariate normality. 

Keywords: clustering; forward plot; graphics for multivariate data; Ma- 
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I I n t r o d u c t i o n  

The forward search is a powerful robust statistical method for exploring the 
relationship between data and fitted models. It relies on the interpretation 
of a large number of graphs. Atkinson and Riani (2000) describe its use in 
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linear and nonlinear regression, response t ransformat ion and in generalized 
linear models, where the emphasis  is on the detection of unidentified subsets 
of the da ta  and of mult iple masked outliers and of their  effect on inferences. 
In this paper  we extend the method to the analysis of mul t ivar ia te  data.  Our 
emphasis here is ra ther  more on the da ta  and less on the mul t ivar ia te  normal 
model. 

The forward search orders the observations by closeness to  the assumed 
model, s tar t ing from a small  subset of the da ta  and increasing the number 
of observations rn used for fitting the model. Outliers and small  unidentified 
subsets of observations enter  a t  the end of the search. Even if there  are a 
number of groups, as in cluster analysis, we s ta r t  by fit t ing one mul t ivar ia te  
normal d is t r ibut ion to the data.  An impor tant  graphical  tool  is a variety 
of plots of the Mahalanobis  distances of the individual  observations during 
the search. Each unit,  originally a point in v-dimensional  space, is then 
represented by a curve in two dimensions connecting the almost  n values of 
the distance for tha t  unit calculated during the search. Our  task  is now to 
classify these curves. 

Section 2 defines the search. Thereafter  we proceed by examples,  all 
of which are of mul t ivar ia te  data.  The first is of measurements  on Swiss 
heads which we use to introduce forward plots of Mahalanobis  distances. 
These plots indicate some outliers in the milk da ta  analysed in w We then 
use a synthet ic  example in w to cal ibrate  our plots, showing the effect of 
clusters. Forward  plots of individual Mahalanobis  distances and of the trace 
of the es t imated covariance matr ix  are also helpful in revealing unsuspected 
structure.  These ideas are i l lustrated in w where more s t ruc ture  is discovered 
in the milk data .  Sections 7 and 8 are both concerned with d a t a  with several 
groups. In w we outline the use of the forward search in cluster analysis. 

Because we use Mahalanobis  distances, it is impor tan t  t ha t  the  d a t a  are 
approximate ly  normal.  We therefore introduce in w a mul t ivar ia te  form of 
the Box-Cox family of transformations.  We use forward plots of tests  for 
t ransformat ion in w to emphasize the importance of the forward search in 
detect ing the effect of just  a few observations on inferences. We conclude in 
w with some comments  on computat ion and on extensions of our graphical  
presentat ion to larger da t a  sets. 

2 T h e  Forward Search 

The main diagnost ic  tools tha t  we use are various plots of Mahalanobis  dis- 
tances. The squared distances for the sample are defined as 

d~ = { y ~ -  ~ } r ~ - l { y ~ _  ~}, (i = 1 . . . .  ,~) ,  (1) 

where t~ is the vector of means of the n observations and E is the unbiased 
es t imator  of the popula t ion  covariance matrix.  
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In the forward search the parameters # and E are estimated from a subset 
of m observations to give the estimates ~(m) and ~(rn). From this subset 

we obtain n squared Mahalanobis distances 

d2(m) = {Yi - ,5(m)}T~-l (m){Yi  --/5(m)}, (i = 1 . . . .  ,n) .  (2) 

We often s ta r t  the search with a small subset of mo observations,  chosen from 
the robust  b ivar ia te  boxplots  of Zani, Riani, and Corbell ini  (1998) to exclude 
outlying observat ions in any two-dimensional plot  of the  data .  The content 
of the contours is adjus ted  to give an initial subset of the required size. The 
search is not sensitive to the exact choice of this subset.  

When  m observat ions are used in fitting, the op t imum subset  S* (m) yields 
n squared distances d~(m*). We order these squared distances and take the 
observations corresponding to the m + 1 smallest  as the  new subset S* (m + 
1). Usually this  process augments the subset by only one observation, but  
sometimes two or more observations enter as one or more leave. Due to the 
form of the search, outliers, if any, tend to enter as m approaches n. 

In our examples  we look at forward plots of the distances di(m*). These 
distances tend  to decrease as n increases. If interest  is in the la t ter  par t  of 
the search we may also look at s c a l e d  distances 

^ ^ "~ 1 / 2 v  ( 

ddm*) • ~ I~( '~*)l / l~(~)l)  , (a) 

where v is the  dimension of the observations y and ~ (n )  is the es t imate  of 2 
at  the end of the  search. 

Such a rescaling increases emphasis on the la ter  par t s  of forward plots. 
Thus, for de tec t ing  initial clusters, the original distances may be better ,  
whereas for a conf i rmatory analysis, where we are interested in the possi- 
ble presence of outl iers or undetected small clusters, we might  prefer scaled 
distances. 

If there are clusters, the confirmatory par t  of our analysis  includes a 
forward search fi t t ing an individual model for each cluster. For all unassigned 
observations we calculate the distance from each cluster centre. Observations 
are included in the subset  of the cluster to which they  are nearest  and the 
distances to all cluster centres are monitored. 

Unfor tunate ly  we may be comparing Mahalanobis  distances for compact  
and d i spe r sedc lus te r s .  A forward allocation can then lead to a dispersed 
group "invading" a compact  group with a wrong al locat ion of several ob- 
servations. We therefore introduce s tandardized distances,  adjus ted  for the 
variance of the individual  cluster. The cus tomary  squared Mahalanobis  dis- 
tance for the  i th  observation from the gth group at  s tep m is 

d~i (.~) = {y~ - ~ ( . ~ ) } r E ;  1(.~) {yg~ _ ~ (.~)}, (4) 

where # and 2 are es t imated  for each group. The  s t a n d a r d i z e d  distance is 

dg~(.~) = d ~ ( - ~ ) l ~ m l  1/2v, (5) 
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in which the effect of differing variances between groups has been completely 
eliminated. These distances will produce measures close to Euclidean dis- 
tance, with the consequence that compact clusters may tend to "invade" 
dispersed ones, the reverse of the behaviour with the usual Mahalanobis dis- 
tance. We generally need to look at plots of both distances. 

3 Swiss  Heads  

As a first example of the use of forward plots we start with data which seem 
to have a single multivariate normal distribution. The data, given by Flury 
and Riedwyl (1988, p. 218), are six readings on the dimensions of the heads 
of 200 twenty year old Swiss soldiers. The forward plot of scaled distances 
in Figure 1 shows little structure. The rising diagonal white band separates 
those units which are in the subset from those that are not. At the end of 
the search there seem to be two outliers, observations 104 and 111. 

(,o 
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50 1 O0 150 200  

S u b s e t  s i ze  m 

Figure 1: Swiss heads: forward plot of scaled Mahalanobis distances. Units 
104 and 111 are outlying towards the end of the search 

Figure 2 repeats Figure 1 with the distances for units 104 and 111 high- 
lighted. These are the largest distances at the end of the search, even though 
they decrease in the final two steps, when the units concerned join the subset. 
This is an example of masking, which is so slight as not to be misleading. 
Although the distances for the two units are the largest in the last thirty 
steps of the search, they rank much lower on size earlier on. This atypical 
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behaviour during the search is a useful way of detecting outliers or units that 

have been classified into an incorrect group. 
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Figure 2: Swiss heads: forward plot of scaled Mahalanobis  distances. The 
t ra jec tor ies  for units 104 and 111 are highlighted 

Figure 3 is a scat terplot  mat r ix  of the observations.  As in Figure 2, we 
highlight units 104 and 111. It is clear t ha t  the search has identified two 
units with the largest values of Y4. W h a t  is not clear is whether these units 
affect any inferences drawn from the data .  We return to this in w where 
we monitor  some other quantities during the search. 

4 M i l k  D a t a  

We now consider a slightly more complicated example, to which we shall 

again return for a fuller analysis. 
Daudin, Duby, and Trecourt (1988) give data on the composition of 85 

containers of milk, on each of which eight measurements were made. A 
scatterplot matrix of the data is in Figure 4. The panel for Ys and Y6 shows 
clearly that one unit is remote in this bivariate projection. Otherwise, several 
panels show a strong rising diagonal structure. There is one gross outlier in 

Figure 5, the forward plot of scaled Mahalanobis distances. Until m = n the 
distance for unit 69 is off the top of the plot. Unit 44 becomes less outlying as 
the search progresses and is the first of a group of four moderately outlying 
units to enter the subset. The others, units ], 2 and 41 are clearly outlying 
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F igure  3: Swiss heads: sca t terplo t  mat r ix  of the six measurements  on 200 
heads. Units 104 and 111 are p lot ted  as dots  

until  m = 81 when unit 44 joins. The distances then decrease until there  is 
some masking at  the end of the search, with unit  77 having the third largest  
distance. 

We now look in more detail  at  the data.  The two scat terplots  of F igure  6 
are details  of Figure 4 with the five points highlighted. Unit 69, at the top of 
both  plots, is the last to enter and is the clear outl ier  a lready mentioned. The  
group of four units, 1, 2, 41 and 44, are par t icular ly  evident in the r ight -hand 
panel  of the figure. W h a t  also seems apparen t  in this figure is a separa ted  
group of seven observations in the lower left-hand corner of the plot of Y6 
against  y4. This group has no obvious effect on the forward plot of distances.  
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Figure 4: Milk data: scatterplot matrix. There is a strong diagonal structure 
in some panels 

5 Three Clusters,  Two Outliers 

We now consider the analysis of a simulated data set, partly in order to t rain 
our eyes to the interpretat ion of further plots of the type we have already 
seen. There are three new features of this example and its analysis - one 
is that  the data contain more than  one cluster, although we initially fit a 
single multivariate normal distribution. The second is that  we can choose 
our start ing point to be in each cluster in turn  and the third is that  we 
introduce several powerful new plots. 

There are only two variables. The data contain three clusters and two 
outliers. The sizes of the groups are 60 in the tighter cluster, 80 in the more 
dispersed cluster, 18 and 2. Figure 7 shows the data. Since there are only 
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Figure 5: Milk data: forward plot of scaled Mahalanobis distances. The trace 
for unit 69 is off the plot until the last step 
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Figure 6: Milk data: scatterplots of Y6 against Y3 and Y6 against Y4. The 
outlying units in Figure 5 are labelled 
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Figure 7: Three  Clusters, Two Outliers: sca t te rp lo t  of the da t a  

two variables, the structure of the data is apparent from the scatterplot. We 
now see how it is reflected in the plots from the forward search. We begin the 
forward search with m �9 -- 28, the observations being chosen by the method 
of robust boxplots with elliptical contours. The starting ellipse has mostly 

chosen observations from the group of 60. The few observations from the 
diffuse group are eliminated at the first forward step and the search then 

continues solely with observations from the compact group until m -- 61 
when observations from the diffuse group enter. Just before all the diffuse 
observations are included, the two outliers, observations 159 and 160 enter 

the subset, although they are soon rejected, rejoining again at the very end 
of the search. 

Fig. 8 is a forward plot of the scaled Mahalanobis distances, in which we 
have used different line types for the three clusters and the two outliers. This 
plot indicates all the s t ructure  in the data,  which is par t icu lar ly  clear up to 
m = 60: the second group is clearly separated from the first, the distances 
of the compact  group of 18 are evident at  the top of the  plot  and the two 
outliers follow an independent  path.  Once the second group s tar ts  to enter 
at m = 61, the smaller  distances are not so readily interpreted,  a l though the 
group of 18 remains  distinct.  The two outliers re-emerge at  the very end. 

We do not have to plot all the Mahalanobis  distances. F igure  9 summarises  
the dis t r ibut ion of distances in Fig. 8. For each of the three  clusters the figure 
shows the 5%, median and 95% points of the d is t r ibut ion  of distances at  each 
m. Group 4 consists of the two outliers. The panels clearly show tha t  the 
t ra jector ies  of the distances in the different groups are distinct.  Figure 10 is 
the forward plot  of the minimum Mahalanobis  dis tances amongst  units not 
in the subset. This  distance will be large for a single outlier.  If there are 
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Figure 8: Three Clusters, Two Outliers: forward plot of scaled Mahalanobis 
distances, with line type indicating membership of the clusters and the out- 
liers. The initial subset, found by the method of robust ellipses, consists 
mostly of units in the compact group 

Group 1 Group 2 

r------------x.___ 

40 60  80  100 140 40  60  80  100 140 

Group 3 Group 4 

40  60  80  100 140 40  60  80  100 140 

Figure 9: Three Clusters, Two Outliers: forward plot of summary of scaled 
Mahalanobis distances for the groups in Fig. 9; 5%, median and 95% points of 
the distribution of distances for each m. Group 4 consists of the two outliers 
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Figure  10: Three  Clusters, Two Outliers: forward plot  of the minimum Ma- 
halanobis dis tances amongst  units not in the  subset: again rn0 = 28, found 
by the method of robust  ellipses 

several outl iers the distance will be large jus t  before the first one enters the 
subset. Once it has entered, the es t imates  of the parameters  will change and 
the dis tance to the remaining outliers may be less. This is true of a cluster 
of outl iers and  is true of the sharp spike at  rn = 60 which clearly shows the 
end of the first cluster. The second spike at  rn = 142 is a rather  less clear 
indicat ion of the second group, a l though the spike at  the end of the plot 
clearly shows the presence of, now, two outliers. 

A thi rd  new plot, shown in Figure 11, is the forward plot of the scaled 
trace of the es t imated  eovariance matrix.  The scaling gives a value of one to 
the t race at  the end of the search. This is small  up to rn = 60, corresponding 
to fitt ing units in the tight cluster. I t  then increases s teadily up to rn = 80. 
At this point  units from both groups are in the subset,  with the mean of the 
observations in between the two groups. The  value of the trace increases only 
gradual ly  until  the third group and outliers become impor tan t  after rn = 140. 

To i l lustrate  the effect of the s ta r t ing  point  of the  search we now begin 
with 20 observat ions from the cluster of 80 indica ted  in Figure 8. The  for- 
ward plot of scaled Mahalanobis distances is in Figure 12. I t  is amazingly 
informative.  The  first part  of the plot, up to rn = 80 seems to show two 
groups and two outliers. Something is clearly wrong with fitting a single 
model  a round rn = 100: there are perhaps  two clusters, of different sizes 
than  before. The t ransi t ion between these two par ts  of the plot is fascinat- 
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Figure 11: Three Clusters, Two Outliers: forward plot of the scaled trace of 
the covariance matrix for the search also shown in Figures 8 and 10 
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Figure 12: Three Clusters, Two Outliers: forward plot of scaled Mahalanobis 
distances starting in the largest group, with line type indicating membership 
of the clusters and the outliers, as in Figure 8. All the structure is revealed 
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ing. Above rn = 80 the seemingly larger cluster splits into two parts .  One 
par t  becomes the group of 18 outl iers  in the la t ter  par t  of the plot. The  other  
becomes the group of 60 with the smallest  distances in the la t te r  pa r t  of the  
plot. Thus the plot reveals the three groups and two outliers, which reappear  
at  the end of the search. This one plot  shows all the s t ructure  tha t  we have 
built  into the data.  The indicat ion is tha t  we may need to run more than  
one forward search, constraining the  s tar t ing point by the information tha t  
we have obtained from earlier searches. 

6 Milk Data  Again 

So far we have detected the effect of one gross outlier and found a further 
cluster of four outliers from the forward plot of Mahalanobis  distances in 
Figure 5. Figure 13 shows the t race  of the covariance matr ix.  There  is an 
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Figure 13: Milk data:  
mat r ix  
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forward plot  of the scaled trace of the covariance 

appreciable  increase s tar t ing at  rn = 71 when observation 11 enters. The  
other  observations entering during this rising period are 76, 15, 14, 12 and 
13. This behaviour is reminiscent of tha t  we saw in Figure 11 as a second 
cluster entered the subset in the example  with three clusters and two outliers.  
The sca t terplo t  of the data,  with unit  69 removed, is in Figure 14. We have 
highlighted the six observations entering during this rising period. In all 
panels they cause an extension of the  range of the da ta  and so of the  variances 
of the individual  responses. They  are six of the seven we previously noted in 
the lower left-hand corner of the plot of Y6 against  Y4 of Figure 6. The  panel  
for yl against  y7 in Figure 14 clearly separates  the seventh observat ion from 
the other six. Although this group of six observations has no obvious effect 
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Figure 14: Milk data:  sca t te rp lo t  matr ix.  The six observations highlighted 
enter during the rising per iod from m = 71 in Figure 13 

on the forward plot of distances,  we have been able to identify its effect on 
the es t imated covariance matr ix.  

7 Swiss  B a n k  N o t e  D a t a  

As a second example with at least two clusters we look at readings on six 
dimensions of 200 Swiss bank notes, i00 of which may be genuine and I00 
forged. All notes have been withdrawn from circulation, so some of the notes 
in either group may have been misclassified. Also, the forged notes may not 
form a homogeneous group. For example, there may be more than one forger 
at work. The data, and a reproduction of the bank note, are given by Flury 
and Riedwyl (1988, p. 4-8). 

Figure 15 shows the scaled Mahalanobis distances from a forward search 
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Figure 15: Swiss bank note data ,  forward plot of scaled Mahalanobis  dis- 
tances for both  groups: the do t ted  lines are for the forgeries 

s tar t ing with 20 observations on notes believed genuine. The  traces of dis- 
tances for the forgeries are shown with dot ted  lines. In the  first pa r t  of the 
search, up to rn = 93, the observations seem to fall into two groups. One 
has small distances and is composed of observations within or short ly to join 
the subset. Above these there are some outliers and then, higher still, a con- 
centrated band of outliers,  all of which are behaving similarly. The s t ructure  
of this plot has much in common with tha t  of Figure 12, a l though there are 
three clusters. Here the  two groups are apparent ,  the forward search yielding 
the same 100 forgeries as F lu ry  and Riedwyl (1988). However, the la t ter  part  
of the search in Figure 15 does suggest there is something further to explain: 
units 1 and 40, shown by continuous lines, are out lying from Group 1 and 
fall among a much larger number of outlying units all from Group  2. 

The s t ructure  of the  group of forgeries is also readi ly revealed by the 
forward plot of scaled Mahalanobis  distances just  for the forgeries shown in 
Figure 16. In the centre of the plot, around m = 70 this shows a clear 
s tructure of a central  group, one outlier from tha t  group and a second group 
of 15 outliers. As successive units from this cluster enter  after m -= 85, they 
become less remote and the distances decrease. 

In this example the forward search clearly indicates not only the  presence 
of two groups of notes, but  also tha t  the group of forgeries is not  homogeneous, 
itself consisting of two subgroups.  Once we know what  we are looking for, this 
third group can be identified on the scat terplot  mat r ix  of the  observations.  
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Figure 16: Swiss bank note data,  forward plot of scaled Mahalanobis  dis- 
tances: the forgeries, showing evidence of a th i rd  group of 15 units plot ted 
with continuous lines 

Figure 17 is one panel, tha t  of Y6 against  Y4, in which the three groups are 
most clearly seen. 

8 Clus ter  Ana lys i s  and t h e  D i a b e t e s  D a t a  

In cluster analysis  we seek to divide the da ta  into homogeneous groups, or 
clusters, wi thout  knowing how many clusters there  are. As an example of 
how the forward search can help we look at  145 observat ions on diabetes pa- 
tients, which have been used in the s tat is t ical  l i tera ture  as a difficult example 
of cluster analysis.  A discussion is given, for example,  by Fraley and Raftery 
(1998). The  da t a  were introduced by Reaven and Miller (1979). There are 
three measurements  on each patient:  yl and y2 are respectively p lasma glu- 
cose and p lasma insulin response to oral glucose; y3 is the degree of insulin 
resistance. The  observations were classified into three  clusters by doctors, 
but  we ignore this information in our analysis. 

Figure 18 is a scat terplot  mat r ix  of the data .  There  seems to be a central 
cluster and two 'a rms '  forming separate  clusters. The  first cluster is appre- 
ciably more compact  than  the other two. There would seem to be no obvious 
breaks between clusters, so tha t  we can expect  our plots to yield less sharp 
answers than  those for the previous examples with two or more groups. 

We proceed as before, first fitt ing a single d is t r ibut ion  to all the data.  
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Figure 17: Swiss bank note data. Scatterplot of Y6 against Y4 which reveals 
most of the structure of all 200 observations: there are three groups and an 

outlier from Group I, the crosses 

The forward plot  of Mahalanobis  distances contains  some gaps, al though not 
as clear as those in Figures 8 and 12, which do suggest three groups. If 
there are groups of observations, their dis tances  will tend to increase and 
decrease together.  The information in such forward plots of distances can 
then be summar ized  by looking at  the changes in distances.  Figure 19 shows 
such changes in the forward plot of Mahalanobis  distances,  ordered by first 
appearance  in the subset,  with black represent ing an increase. The third 
group are the  last  to enter this forward search, and show clearly at  the top of 
the plot. The  second group is certainly different, enter ing immediate ly  before 
the third group and so coming lower in the plot. The  division between the 
first and second groups is not so clear - it might  be anywhere between 55 and 
75 on the scale of ordered units. 

These pre l iminary  groups can be refined by further forward searches, for 
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Figure  18: Diabetes  data:  scat terplot  matr ix .  There  may be three overlap- 
ping clusters 

example  s ta r t ing  with units believed to be correct ly classified. Group 2 is 
ra ther  heterogeneous, being formed from units  we did not assign to Groups 
1 or 3 in the prel iminary analysis. Despite this, the forward plot of scaled 
Mahalanobis  distances in Figure 20 does show a common structure for all 
units. Ini t ia l ly  there is much act ivi ty  as the  units from Group 2 are intro- 
duced. Then Group 1 enters, providing a per iod of stable growth in nearly 
all distances.  At the end, Group 3 enters and the behaviour is once again 
less homogeneous. The t ra jector ies  of five units have been highlighted on the 
plot. These seem rather  different from the other  t ra jector ies  and we re turn  
to these units in a moment.  

Similar  analyses of individual Mahalanobis  dis tances from the other groups 
lead to a division into certainly assigned units and those about  which we are 
less sure. We then switch to forward searches fi t t ing three ellipsoids. Since 
the variances of the groups are not equal, we use s tandardized distances with 
all seemingly certainly al located observations fi t ted before any of the unas- 
signed observations are allocated. Many of these units do not change their  
group membership  and so can be al located with certainty. 

Our final forward search is represented in Figure  21, for m = 117 to 145. 
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Figure 19: Diabetes data: forward plot of changes in Mahalanobis distances 
(black is an increase), suggesting membership of the three groups 

As a result of our earlier analyses, 116 units were considered classified with 
certainty. The bottom three lines of the figure are the key and the first col- 
umn our provisional classification. The lower section of the figure above the 
key shows the behaviour of units we considered well classified, but which were 
subject to reclassification during the search. Using standardized distances, 
units are attracted to less dispersed groups. The figure shows several units 
from Group 3 attracted to group 2, which has a smaller dispersion, although 
larger than that of Group 1. An example is Unit 131, highlighted in Fig- 
ure 20, which remained throughout in Group 2, although our other analyses 
indicated membership of Group 3. The top part of the figure shows units 
about whose membership we are uncertain. Three of the other units high- 
lighted in Figure 20 are classified in Group 1. Despite all our analyses, we 
are unable to decide about the first five units in the figure. 

Figure 22 is the scatterplot matrix of the final allocation from the forward 
search, with uncertain units highlighted: these units fall at the intersections 
of clusters. Comparison with the doctors' original allocation shows that our 
clustering provides groups which are more coherent and compact. 
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Figure 20: Diabetes data, start ing from Group 2: forward plot of scaled 
Mahalanobis distances for units provisionally in Group 2; the highlighted 
units are not certainly classified 

9 F i n d i n g  a T r a n s f o r m a t i o n  w i t h  t h e  F o r w a r d  

S e a r c h  

Transformations of the data can be used to help satisfy the assumptions of 
multivariate normality. We have found that  extension of the Box and Cox 
(1964) family to multivariate responses often leads to a significant increase 
in normality, and so to a simplified analysis of the data. We let yij be the 
i-th observation on response j;  j = 1 , . . . ,  v. The normalized transformation 
of Yij is 

z i j ( ) t j )  yi~ ~ - 1 - (;, # o) X ~j-1  
j G j  

= Gj  logyij (~ = 0), 

where Gj is the geometric mean of the j - th  variable. The values ~j = 1, 
j = 1 , . . . ,  v, correspond to no transformation of any of the responses. If 
the transformed observations are normally distributed with mean #(A) and 
covariance matrix E()~), the loglikelihood of the observations is given by 

l(~)= n 1 n 
- ~  log 27rIE(A)I - ~ ~-~,{zi - ] ~ t ( ) ~ ) } T ~ - l ( ) ~ ) { z i  - -  ~(/~)}, (6) 

i = 1  
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Figure 21: Diabetes data :  final forward search. The  classification of units in 
the top panel is uncer ta in  

where z~ = ( z i l , . . . ,  z~v) T is the  v z 1 vector which denotes the  t ransformed 
da ta  for unit  i. Subs t i tu t ing  the maximum likelihood es t imates  fi(A) and 
E(,~) in equation (6), the maximized loglikelihood can be wri t ten  as 

l(A) = constant  - n/2 log [~(A)l. (7) 

To test the hypothesis .~ = A0, the likelihood ratio test 

TLR = n ]og{ I ~ ( ~ 0 ) l / l ~ ( ~ ) l }  (S) 

can be compared with the X 2 dis t r ibut ion on v degrees of freedom. In equa- 
tion (8) the maximum likelihood es t imate  ~ is found by numerical  search. 

Riani and Atkinson (2000) use the forward search to find sat isfactory 
t ransformations for a single variable,  if such exist, and the observat ions tha t  
are influential in their  choice. For mult ivariate  t ransformat ions  Riani  and 
Atkinson (2001) moni tor  a sequence of forward plots of the square root of 
the likelihood rat io s ta t is t ic  (8) to obtain t ransformat ions  which described 
most of the data ,  with the  outliers entering at  the end of the searches. Re- 
sults on the dis t r ibut ion of the test  s ta t is t ic  for univariate t ransformat ions  in 
regression are in Atkinson and Riani  (2002). These show tha t  asympto t ic  re- 
sults are a good guide to significance, provided there is a s trong relat ionship 
between the mean and the explana tory  variables. 
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Figure 22: Diabetes data: scatterplot matrix, showing units not certainly 
classified 

10 Swiss Heads Again 

One purpose of an analysis using the forward search is to establish the connec- 
tion between individual units and inferences. We conclude with a dramatic 
example of the way in which overall statistics can be misleading about the 
greater part  of the data, using the data  on Swiss heads introduced in w 

In w we showed that  there were two outliers, units 104 and 111, which 
were the last two to enter the forward search. They did not seem to have any 
effect on inferences. However, Figure 23 is a forward plot of the likelihood 
ratio test for testing that  all six values of A are equal to one. This is based on 
a search on untransformed data, so that  the order of entry of the units is the 
same as in our earlier analysis. In particular, units 104 and 111 are the last 
two to enter. The figure shows the enormous impact these two observations 
have on the evidence for transforming the data. At m = 198 the value of 
the statistic is 7.218, only slightly above the expected value for a X~ random 
variable. This rises to 15.84 after the two outliers have entered, a value above 
the 95% point of the distribution, which is indicated on the plot. Without  
the information provided by the forward plot it would be easy to be misled 
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Figure 23: Swiss heads: forward plot of the l ikelihood rat io  test for the 
hypothesis of no t ransformat ion.  The horizontal  line is the  95% point  of )i5. 
The last two units to enter  provide all the evidence for a t ransformat ion 

into believing tha t  the d a t a  need transformation.  
Evidence for a t ransformat ion is provided by a skewed distr ibution.  The 

only skew d is t r ibu t ion  in the scat terplots  of the da t a  such as those in Figure 3 
is the marginal  d is t r ibut ion  of Y4, caused by the out lying values of units 104 
and 111. To test  whether  all the evidence for the t ransformat ion  is due to y4 
we repeat  the calculat ion of the likelihood ratio,  but  now only test ing whether 
~4 = 1. The o ther  five values of A are kept at one, bo th  in the null parameter  
vector A0 and in the  m. l . e .A.  The search is therefore the  same as before, but 
now gives rise to Figure  24, showing a test  s ta t is t ic  to be compared  with X~. 
It is now even clearer tha t  all evidence for t ransformat ion  of Y4 is provided by 
the inclusion of units 104 and 111. At the end of the search the test  stat ist ic 
has a value of 8.789, compared  with 15.84 in Figure 23 for t ransforming all six 
variables. The  difference, 7.05, is not significant for a X52 random variable, so 
that  the evidence of the  tests at the end of the search is tha t  Aa -fi 1, whereas 
all other variables are equal to one. 

This example shows the importance of the forward search in discovering 
influential observations.  I t  also shows the power of combining stat is t ical  
modelling with graphical  presentation.  
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Figure 24: Swiss heads: forward plot of the likelihood ratio test for the 
hypothesis of no transformation of y4. The horizontal lines are the 95% and 
990/0 points of X~. The last two units to enter also provide all the evidence 
for this transformation 

11 D i s c u s s i o n  

11 .1  C o m p u t i n g  

Our examples are calculated using Gauss, which provides a combination of 
numerical programming and working graphics that we have found invaluable 
in developing the methods of the forward search. Most of our production plots 
are produced in S-Plus�9 The methods for univariate data (regression and gen- 
eralized linear models) have been programmed in a Graphical User Interface 
(GUI) for S-Plus, which is available from the website for Atkinson and Riani 
(2000). A second book, Atkinson, Riani, and Cerioli (2003) on the analysis 
of multivariate data will give details of the methods sketched in this paper. 
Software will be made available on the same site http://www.riani, it/at 

11 .2  Graphics 
Forward plots of Mahalanobis distances, such as Figure 1, are taken directly 
from the output of our Gauss program. On the screen the variety of line 
types and colours, together with the ability to zoom, makes it possible to 
follow the trajectories of individual units in a way which is impossible on the 
printed page. Procedures for enhancing the plots include highlighting the 
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trajectories of units of interest, as in Figure 2, and in using the same line 
style for units from conjectured groups as in Figure 8. Our goal is to be able 

to brush linked plots from the forward search, although this is still in the 
future. 

The forward search , as described in w moves from a subset of m obser- 
vations to one of m+ i. With larger sets of data the search can move forward 
in steps of size s > 1 from a subset of size m to one of size m + s, with pro- 

portional saving in computational time. Graphics can also be Simplified to 
avoid uninformative overplotting, for example by using summary quantities 
as in Figure 9. 

1 1 . 3  D a t a  A n a l y s i s  

Our examples show some of the ways in which the forward search is a powerful 
tool for exploring the structure of multivariate data. The largest data set in 
Atkinson, Riani, and Cerioli (2003) is of 28 responses from 341 municipalities 
in which we use the forward search to find appropriate transformations for 
each variable. As a result the structure of the data becomes much clearer. 

Often, for example, a transformation of the data leads to a greatly improved 
separation of the data into a main, multivariate normal, cluster and a few 
outliers. These outliers however mask the correct transformation and so have 
to be detected during the process of finding the transformation. Another 

example is the analysis of the diabetes data in ~8, where our analysis ledto a 
more coherent clustering and a clearer identification of borderline units than 
have other analyses, for example, that of Fraley and P~aftery (1998). 

Although, in the examples in this paper, we have often been able to 
relate our findings about the properties of particular units to the scatterplot 
matrix of the data, such a two-dimensional tool can fail to reveal outliers. 
But, much more importantly, the discovery of "interesting" observations by 
searching the Euclidean space of the observations can tell us nothing about 
the importance of each unit on inferences drawn from the data. If models 
are to be fitted and hypotheses tested, the forward search provides a unique 
way of visualising the effect of each unit 
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