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Abstract The evaluation of the effectiveness of organisations can be aided by the 
use of cluster analysis, suggesting and clarifying differences in structure between 
successful and failing organisations. Unfortunately, traditional methods of cluster 
analysis are highly sensitive to the presence of atypical observations and departures 
from normality. We describe a form of robust clustering using the forward search 
that allows the data to determine the number of clusters and so allows for outliers. 
An example is given of the successful clustering of customers of a bank into groups 
that are decidedly non-normal. 

1 Introduction 

The evaluation of the effectiveness of organisations has become an important 
strategic element in both the public and private sectors. Successful organisational 
structures need to be studied and emulated, whilst those that are failing need to be 
identified as early as possible so that preventive measures can be put in place and the 
waste of resources minimized. If organisations can be appropriately classified into 
homogeneous groups their differences in structure become more certainly identifi­
able and the number of special cases that has to be studied is dramatically reduced. 
The clustering of data is being increasingly used as a method of evaluation in public 
administration, see Peck (2005), and as a strategic element of political and admin­
istrative action, partly because it falls within the range of methods which has been 
deemed appropriate by the EU and the GEeD (see for example the working papers 
contained in the web site http://www.oecd.org). 

There are many statistical methods for the classification of multivariate obser­
vations such as those that describe the properties of an organisation. But, as is 
well known, at least to statisticians, the traditional methods of cluster analysis are 
highly sensitive to the presence of atypical observations and to incorrectly specified 
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structures. Despite this sensitivity, robust statistical methods that are unaffected by 
outliers and model-misspecification are little used. It is the purpose of the present 
paper to extend and apply robust cluster analysis using the forward search as intro­
duced in Chapter. 7 of Atkinson et al. (2004). This graphics-rich robust approach to 
clustering uses the data to identify the number of clusters, to confirm cluster mem­
bership and to detect outlying observations that do not belong to any cluster. More 
specifically, our analyses rely on forward plots of robust Mahalanobis distances. In 
order to provide sensitive inferences about the existence of clusters it is necessary 
to augment such graphs with envelopes of the distributions of the statistics being 
plotted. Examples of such envelopes and their use in the forward search for cluster­
ing moderate sized data sets are presented by Atkinson et al. (2006) and Atkinson 
and Riani (2007), in which the largest example has 1,000 observations. The theoret­
ical results of Riani et al. (2009) provide the tools for extending our methodology
 
to larger data sets, where indeed inspection of the trajectory of a single minimum
 
Mahalanobis distance, defined in (3), greatly simplifies the cluster identification
 
process. In Bini et al. (2004) we applied earlier versions of these methods to the
 
analysis of a complicated set of data on the performance of Italian universities. Here
 
we exemplify our method with a simpler example from banking. Other successful
 
applications of the forward search to classification problems with several clusters
 
and outliers are described by Cerioli et al. (2006) and Riani et al. (2008).
 

2 Mahalanobis Distances and the Forward Search 

The main tools that we use are plots of Mahalanobis distances. The squared 
distances for the sample of n v-dimensional observations are defined as 

d z { A}T~-l{ A}i = Yi - fL LJ Yi - fL , (1) 

where (l and i; are the unbiased moment estimators of the mean and covariance 
matrix of the n observations and Yi is v x 1. 

In the forward search the parameters fL and :E are estimated from a subset S (m) 
of m of the n observations ynxv, with element Yij. The parameter estimates are 
(l(m) with 

!l(m)j = L YU/ m , j = 1, ... , v 
iES(m) 

and i;(m) where 

i;(m)jk = L {Yij - {l(m)j}{Yik - (l(m)k}/(m -1), j, k = 1, ... , v. 

iES(m) 

From this subset we obtain n squared Mahalanobis distances 

i = 1, ... ,no (2) 
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To start the search for cluster identification we take a random sample of mo = 

v + 1 observations, the minimum size for which :E can be estimated. We require 
this subset to be as small as possible to maximize the probability that all members 
of S(mo) come from the same cluster. This subset of mo observations grows in 
size during the search in such a way that non-cluster members will be excluded 
with high probability. When a subset SCm) of m observations is used in fitting we 
order the squared distances and take the observations corresponding to the m + 1 
smallest as the new subset SCm + 1). Usually this process augments the subset by 
one observation, but sometimes two or more observations enter as one or more leave. 

To detect outliers we examine the minimum Mahalanobis distance amongst 
observations not in the subset 

dmin(m) = min d; (m) i <t SCm). (3) 

If this observation is an outlier relative to the other m observations, this distance 
will be "large" compared to the maximum Mahalanobis distance of observations in 
the subset. All other observations not in the subset will, by definition, have distances 
greater than dmin (m) and will therefore also be outliers. 

For small datasets we can use envelopes from bootstrap simulations to determine 
the threshold of our statistic during the forward search. For moderate sized datasets 
we can instead use the polynomial approximations of Atkinson and Riani (2007). 
For larger samples, Atkinson et al. (2007) rescale a paradigmatic curve obtained 
by simulation to have the correct sample size and number of variables. Riani et al. 
(2009) use arguments from order statistics and estimation in truncated samples to 
obtain envelopes without requiring simulation. 

For cluster definition, as opposed to outlier identification, several searches are 
needed, the most informative being those that start in individual clusters and con­
tinue to add observations from the cluster until all observations in that cluster have 
been used in estimation. There is then a clear change in the Mahalanobis distances 
as units from other clusters enter the subset used for estimation. This strategy seem­
ingly requires that we know the clusters, at least approximately, before running the 
searches. But we, as do Atkinson and Riani (2007), instead use many searches with 
random starting points to provide information on cluster existence and definition. 

3 Example 

To illustrate our methodology we look at an example with a dataset of customers 
from a bank operating in Italy. The variables that we consider are: 

Yl: Direct debts to the bank; 
yz: Assigned debts from third parties; 
Y3: Amount of funds deposited; 
y4: Total amount invested in government securities. 
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Fig. 1 Logged Banking data. Forward plot of minimum Mahalanobis distances, indicating two
 
clusters; the trajectories in grey always include units from both of our final groups
 

The bank under study had just undertaken a thorough restructuring of all its activ­
ities. The purpose of the data analysis was to classify into homogeneous groups only 
those customers who had positive values for these four variables, of whom there 
were 322. Because the data were highly asymmetric, logs were taken to achieve 
approximate symmetry. In order to avoid singularity problems the logged data were 
also slightly jittered by adding a small normal noise. 

Figure I shows a forward plot of minimum Mahalanobis distances from 200 
random starts with 1 and 99% bounds. The structure of this plot is similar to that 
seen in Fig. 5 of Atkinson and Riani (2007), in which the simulated data consisted 
of two overlapping clusters. 

As m increases the number of different subsets found by the forward search 
decreases, as is shown in the panels of Fig. 2. For m greater than 215 all searches 
follow the same trajectory. Earlier, around m = 110-130, there are two sets of tra­
jectories lying clearly outside the envelopes (the black lines in the figure) and a large 
number of trajectories, represented in grey, within or close to the envelopes. The two 
sets of black trajectories in this range correspond to searches in which all the units 
in the subset are likely to come from a single cluster. If we identify the units in the 
subsets at m = 118 we obtain two initial clusters of observations. The largest value 
of dmin (m) gives a cluster with 118 observations and the second largest value a clus­
ter of 115 observations, once three observations that might be in either cluster are 
removed. At this point we have preliminary clusters with a total of 233 observations 
and 89 observations to be clustered. . 

The scatterplot of the values of Y3 and Y4 for these two initial clusters are shown 
in the left-hand panel of Fig. 3. The two groups are clearly separated as they are 
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Fig. 2 Logged Banking data. Forward plots of number of unique Mahalanobis distances from 
ZOO random starts. Left-hand panel, from ZOO to I; right-hand panel, zoom of plot where clusters 
become apparent 
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Fig. 3 Logged banking data: Scatterplot matrices of the two initial clusters of 118 and liS 
observations found from Fig. I. Reading across: Y3 and Y4, Y2 and Y4 and, right-hand panel, Yl 
and Y2 

in the centre panel, which is the scatterplot of yz and Y4. However they overlap 
in the right-hand panel, the scatter plot for Yl and yz. We have thus found two 
clear clusters, which plausibly have a multivariate normal structure, together with 
89 observations which may perhaps belong to one of the groups, or to other groups, 
or that may be unstructured outliers. 

To explore these possibilities we now run a forward search with two clusters 
starting with the cluster centres we have already found. In an extension of (2) we 
now assess two Mahalanobis distances for each unit 

(l = 1,2), (4) 

where iLl (m) and I:. l (m) are the estimates of the mean and covariance matrix based 
on the observations in group I, I = 1 or 2, and m = m 1 + mz is the total number 
of observations in the subsets for both groups. As before we start with a subset of 
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mO = mOl + m02 observations. But now we want to preserve the cluster struc 
we have already established. So, for each m, we only consider the properties of t ..' 
2(n - mo) squared Mahalanobis distances for the units that are not in the initial 
subset. We repeat the process several times for increasing values of mo that we take? 
as 75% of the numbers of units which are indicated as correctly classified. '. 

For each value of m we can use the values of d? (l , m) to allocate each unit not. 
in mo to the cluster to which it is closest. We monitor how this allocation changes 
as the search proceeds. Those units that are firmly clustered stay in the same cluster " 
throughout. Usually only those units about which there is some doubt have an allo- .' 
cation that changes as the search progresses. We ran one such search with the initial 
subset formed from the central 75% of units yielding our initial clusters of 118 and 
115 units, that is the first 75% of this new set of units to enter these clusters in the 
individual searches shown in Fig. 1. We then obtained a set of units the allocations 
of which remained constant throughout the search. 75% of this new set of units 
resulted in an increased value of 204 for mo. Figure 4 shows a forward plot of the 
allocation of the seven units that changed allocation during this two-cluster search. 
The bottom two lines serve as a key. The next band of two lines is for units 118 
and 124. The classification of these units in the first cluster was not in doubt in our 
previous analyses, but they briefly become closer to the second group as the param­
eter estimates change with the inclusion of new units in the subsets used in fitting. 
The remaining seven lines, working upward, show the allocation, from m = 240, 
of units 110, 134, 135, 145, 178, 179 and 211. All other units, excluded from the 
plot, would have a single symbol throughout. As we shall see, these seven units lie 
between our two groups, so we refer to them as a "bridge". If we repeat the two­
group search with the larger value of 268 for mo indicated by the results of Fig. 4 
we find that the units in the bridge are, indeed, the only ones whose classification 
changes during the search. 

The three panels of Fig. 5 show our proposed classification into two groups, of 
145 and 177 units, with seven bridge units. The left-hand panel of the figure shows 
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Fig. 5 Logged banking data: scatterplot matrices of the two final clusters with numbering for the
 
seven units from Fig. 4. Reading across: Y2 and Yi, Y4 and Y2 and, right-hand panel, Y4 and Y3
 

the plot of yz against YI, with the two clusters plotted with different symbols and 
the seven bridge units numbered. The separation of the two groups is not complete 
in these dimensions, with some interpenetration. Here the bridge units, apart from 
211, seem to lie in Group 1, the crosses. The second panel is the plot of Y4 against 
yz. There is a clear division into two groups on the values of Y4 and the bridge units 
seem to cluster in Group 2, again apart from unit 211. The final plot of Y4 against 
Y3 again shows the clear separation on values of Y4, but now the bridge units are 
dispersed. 

These plots seem to indicate that we have satisfactorily clustered nearly all the 
data. But this has been achieved without any reference to the statistical properties of 
our procedure. 

The classification of units shown in Fig. 5 is obtained by comparing Mahalanobis 
distances calculated using parameter estimates from the two groups. A potential 
difficulty, discussed by Atkinson et al. (2004), [po 370], arises if the variances of the 
two clusters are very different. Then Euclidean distances and Mahalanobis distances 
are very different. As measured by Mahalanobis distance, an observation on the edge 
of a tight cluster may have a large distance for that cluster, but a smaller distance 
from a cluster with a larger variance. It will then be assigned to the cluster with 
a large variance. Due to the inclusion of this unit, the estimate of variance of the 
cluster with larger variance will increase and other units in the cluster with small 
variance become increasingly less remote from the cluster with larger variance as 
the search progresses. As a result the cluster with the looser structure absorbs units 
from the tighter cluster. 

A solution to this problem, suggested by Atkinson et aL (2004), is to use instead 
distances standardised by the determinant of the estimated covariance matrix. These 
distances behave more like Euclidean distances and avoid the particular problem of 
loose clusters absorbing observations from tight clusters. However, these problems 
arise when the variances of the groups are very different. As a result of taking loga­
rithms of the data, we have broken the relationship between the means and variances 
of our observations and, as Fig. 3 indicates, have obtained two groups with roughly 
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equal variances. In fact, here a search with standardised distances yields the same 
classification as that found using unstandardized distances. 

In Fig. 1 we used envelopes derived from the multivariate normal distribution 
to establish preliminary clusters. We now repeat this procedure to confirm the two 
clusters that we have found. If we look at the scatterplots of the final clusters in 
Fig. 5 and compare them with the preliminary clusters in Fig. 3, we see that our final 
clusters have become appreciably less elliptical in outline and so can be expected 
to be relatively poorly described by a multivariate normal distribution. This feature 
is revealed in the confirmatory forward plots of minimum Mahalanobis distance for 
the two separate groups. 

Figure 6 shows the forward plot from the 145 units we finally classified in 
Group 1, together with 0.1 and 99.9% envelopes. We have taken these broader 
envelopes as a way of allowing for the very approximate normality of our groups. 
As the figure shows, the 200 random searches settle down as the search progresses 
to give a trajectory that lies towards the upper part of the distribution but without 
any systematic peak and trough of the sort that indicated the presence of clusters in 
Fig. 1. 

The similar Fig. 7 shows the plot for the 170 units of Group 2, together with the 
7 units in the "bridge". Here again there is no clear indication of any presence of 
clusters. The general shape of this plot, lying rather high in the envelope and then 
gradually decreasing is an indication of slight non-normality; Fig. 11 of Riani and 
Atkinson (2007) shows a more dramatic example of a plot with a related structure 
for regression with beta distributed error. The jump in the plot around m = 120 
corresponds, as we saw in Fig. 1, to the end of the normally distributed central part 
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Fig. 6 Logged Banking data. Validation of Group J. Forward plot of minimum Mahalanobis 
distances for the 145 units included in Group I 
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Fig. 7 Logged Banking data. Validation of Group 2. Forward plot of minimum Mahalanobis 
distances for the 170 units included in Group 2 and the seven"bridge" units 

of the cluster in the scatterplots of Fig. 3. At the end of this search there is one 
extreme observation, 211, that has already been identified as the least well grouped. 

An alternative method of clustering is the mclust procedure of Fraley and 
Raftery (2006) in which a mixture of normal distributions is fitted to the data. Atkin­
son and Riani (2007) provide examples in which mclust incorrectly finds more 
clusters than our robust method. The "incorrectness" is a feature of the analysis of 
simulated data in which, of course, we know the true number of clusters. In the 
example of the current paper, the Ble plot from mclust indicates five clusters. 
The forward plots of Figs. 6 and 7 however give no indication of such a structure. 
These forward plots can also be produced for the five tentative clusters. The searches 
do not at all lie within the envelopes, indicating that these five clusters are far from 
satisfactorily homogeneous. There are two conclusions from these analyses. One is 
that the data consist mostly of two rather non-normal clusters. The other is that we 
have found another example in which mclust indicates an excessive number of 
clusters. 
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