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Abstract

A striking feature of most applied statistical analyses is the use of methods that are
well known to be sensitive to outliers or to other departures from the postulated
model. Since data contamination is often the rule, rather than the exception, we
investigate the reasons for this contradictory (and perhaps unintended) choice.We
also provide empirical evidence, in a real-world regression problem concerning
international trade, of the advantages of a new approach to data analysis based on
monitoring. Our approach enhances the applicability of robust techniques and the
interpretation of their results, thus yielding a positive step towards a reconciliation
between robustness and applied statistics.

1 Introduction

An early use of the term robustness is due to [5] in a study of the effect of non-
normality on tests of equality of variances. He commented that means are robust
to departures from normality, but that estimates of variances are not. The matter
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is clearly important, since data frequently depart from the assumptions behind the
models of mathematical statistics used to derive tests and other statistical procedures.
Twenty years after Box, the outlines of the modern theory of robust statistics were
becoming clearly established as the development of procedures that behaved well
under small departures from standard assumptions, typically those of normality. This
is a much narrower study than that implied by Box. One purpose of our paper is to
show how the range of application of robust methods can be extended through the use
of ‘monitoring’, exemplified in Sect. 3, wherewe study aspects of fittedmodels under
a series of assumptions about the level of contamination in the data. An important
byproduct is a simplification of the numerous choices required in the application of
robustmethods.We concludewith a discussion of problems that havemostly not been
the subject of robust analysis. One example, treated in Sect. 4.1, is the identification
of data that not only include outliers but in which groups of observations come from
different models. But we start with a brief history of the development of robust
methods.

Reference [38] gives a short history of robustness. The earliest book-length ref-
erence is [1] (the Princeton Robustness Study), at which time it was expected that
all statistical analyses would, by default, be robust. Now, a further forty years on,
there are at least 6 books about robust statistics with over 1,000 citations in Google
Scholar. At the time of writing, the most highly cited is [23] (and its second edition
[25]), the others, in citation order, are [1,18,21,28,36]. Unfortunately, this activity
seems largely to be statisticians talking to other statisticians. Recent references with
more applied emphasis, especially to health sciences, include [15,20] and the forth-
coming book by [14]. However, the impact of robust methodologies in substantive
domains still remains minor.

Although the term “robust” was first popularized by Box, the idea of considering
the distribution of statistics under departures from the assumption of normality goes
back at least to E.S. Pearson’s review [29] of the second edition of Fisher’s Statistical
Methods for Research Workers, an interest that was to stay with Pearson until the
end of his scientific life. The current understanding of robust was much more the
creation of Tukey, starting with [39], and of [22]. Stigler writes:

“... by 1972 a number of the earlyworkers in robust statistics expected that from the
1970s to 2000wewould see the same development with robust methods—extensions
to linearmodels, time series, andmultivariatemodels, andwidespread adoption to the
point where every statistical package would take the robust method as the default....
This was, and I [Stigler] will call it, a Grand Plan. But that plainly is not what has
occurred”.

Stigler then presents a lively and warm discussion of the early history of robust
statistics. One reason for the lack of opening to the scientificworldmay be that robust
statistics, as often understood and practised, has led to a newmathematical statistics,
more complicated than the old, in which ever more refined solutions are presented
to a few well-defined problems. We describe some of these complications in Sect. 2.
From the standpoint of a user of statistical methods, the result of a robust analysis
is to provide an alternative, for example for regression, to least squares. There are
therefore two summaries of the data, rather than one. That this is not an especially



How to Marry Robustness and Applied Statistics 53

appealing development is evidenced by the failure of major commercial statistical
packages to implement robust methods of data analysis except as special procedures
within a well-segregated collection of routines. We appreciate that there are several
robust libraries available in R, but would argue that, again, this package tends to be
statisticians talking to statisticians.

Stigler suggests that the first signs of trouble with the Grand Plan were already
evident in 1972 at the time of the publication of the Princeton Robustness Study. To
quote him again:

“From the full set of 10,465 estimates of a location parameter they had considered,
they reported in detail on the accuracy of 68 estimates that had received extensive
study, focusing upon small samples and an inventively wide selection of 32 distrib-
utions, nearly all of which were symmetric scale mixtures of normal distributions”.

This is far from the Grand Plan and, indeed, none of the authors of the conclusions
in Chap. 7 of the Study made any grand claims for their work. Unlike the psalmist,
they all display a compulsive refusal to lift their eyes to the hills, even for a moment;
no Grand Plan is needed. But the year’s work in Princeton by many intellectually
impressive statisticians did not move far in solving the typical problems of data
analysis mentioned in our first sentences. Indeed, your second author remembers the
mounting despair with which a reading party organized by David Cox at Imperial
College worked through the Study. We were quickly mired in the details of trying to
remember what was, for example, an ‘iteratively C-skipped trimean’. In Cox’s recent
book on applied statistics [13] the index contains just one reference to robustness.
The relevant page carefully discusses the identification and treatment of outliers,
stressing the comparative difficulty of the identification of multiple outliers and
the importance of considering physical interpretation for any outliers found; points
partially illustrated in the analysis of our example in Sect. 3. Likewise, the main
reference to robustness in Huber’s recent book on data analysis [24] downplays
formal methods of robustness. In Sect. 5.3, ‘Mathematical statistics and approximate
models’ Huber writes about the work of Fisher that, after Fisher “the robustness
paradigm – explicitly permitting small deviations from the idealized model when
optimizing – carried [the argument] only a few steps further”. We hope to show that
these works underestimate the contribution to intelligent data analysis that can be
made by proper monitoring of the robust methods developed over 50 years since the
study.

The most extreme forms of robustness usually considered are a very robust fit,
asymptotically resistant to 50% of aberrant observations, and maximum likelihood,
including least squares, which have zero breakdown point. It is common [36,37]
to suggest comparison of the residuals or Mahalanobis distances from such fits. In
the approach illustrated in Sect. 3 we extend this idea, monitoring such quantities
as residuals or distances, parameter estimates, test statistics and other quantities of
interest as the robustness of the fit decreases.We thus obtain information on important
changes in conclusions that come from differing assumptions about the degree of
contamination in the data.

One consequence of our monitoring of robust procedures is that, by considering
a variety of procedures for robust fitting, we are able to determine which, amongst
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the many parameters of the algorithms, are those that are critical, distinguishing
them from those that are only of secondary importance. The final goal is to provide
insightful data analyses by following well-specified procedures that can be straight-
forwardly applied by non-specialists in robust statistics.

Our paper is structured as follows: in Sect. 2 we discuss the choice of an appropri-
ate form of robust method, with an emphasis on regression, difficulties in numerical
procedures and the interpretation of the results of a robust analysis. An important sta-
tistical drawback to downweightingmethods, as opposed to trimming, is the breaking
of the connection between each observational unit and quantities derived from the
analysis, such as parameter estimates.

An example of monitoring is in Sect. 3 where we compare two methods of robust
regression. One, S estimation, reveals that robust and non-robust fits to the data are
very different; the other method, MM estimation, fails to do so, a finding in line with
the conclusions of [33], who use monitoring to compare many different forms of
robust regression.

As the quotation above from [24] indicates, standard robustmethods have typically
been developed under the assumption that there is a single model from which there
are small departures, such as a slightly non-normal distribution of errors, perhaps
together with gross outliers. This is only a slight part of the broad range of possible
departures the data analyst may face. We indicate many such problems in Sect. 4,
the theme of which is “robustness against what”? One important form of departure
arises when the data are a mixture of observations from more than one model. For
multivariate normal populations, this leads to problems of clustering. In Sect. 4.1 we
continue the analysis of the regression data fromSect. 3, showing that they come from
two different regression models. There are also a number of outliers. An important
feature of robust clustering is that it is not necessary to cluster all observations. Our
random startmethod based on the Forward Search does not require prior specification
of the amount of trimming required, a feature it shares with themethod of monitoring
of Sect. 3. The subsequent section of the paper discusses some related issues that
may contribute to discouraging the use of robust techniques, such as the difficulty
in obtaining a reliable estimate of the number of outliers and the lack of knowledge
about the empirical behaviour of the methods when the errors are very non-normal.

2 WhichMethod and How toTune It?

A major disincentive to the routine use of standard robust methods is the number
of decisions that have to be made before the analysis of the data begins. We now
describe some of these.

1. The efficient application of robust methods depends on the proportion of outliers
expected in the particular set of data being analysed. These determine the desired
efficiency or, equivalently, breakdown point. Clearly, a very robust analysis can
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always be used, but this results in an unnecessarily low efficiency for data that
are virtually outlier free.

2. The next choice is the nature of robust estimator that is required. For regression
[33] identify three classes of estimators:

a. Hard (0,1) trimming such as Least Trimmed Squares - LTS: [17,35] or Least
Median of Squares -LMS: [35] inwhich the amount of trimming is determined
by the choice of the trimming parameter.

b. Adaptive Hard Trimming. In the Forward Search (FS), the observations are
again hard trimmed, but the amount of trimming is determined by the data,
being found adaptively by the search. See [2,32] for regression and [4] for a
general survey of the FS, with discussion.

c. Soft trimming (downweighting). M estimation and derived methods, includ-
ing weighted likelihood. The intention is that observations near the centre of
the distribution essentially retain their value, but a suitable weight function
ensures that increasingly remote observations have an effect on fitting that
decreases with distance from the centre [25,27,28].

3. Within the soft trimming family, both the weight function, often called ρ(·), and
the one or two parameters determining efficiency have to be chosen. Reference
[33] use monitoring to compare three methods: S, MM and τ for four ρ functions:
Tukey’s bisquare, optimal, Hyperbolic and Hampel.

The calculations for robust estimation are also much more difficult than those of
least squares. The functions to be maximized when using robust estimators are typi-
cally complicated, with many local maxima. In consequence, approximate methods
are used. The standard approach uses randomly sampled subsets of p observations
(elemental sets). We now list some of the choices that have to be made to provide a
viable algorithm.

1. The number of subsamples to extract, to each of which the model is fitted exactly.
These fitted values are used to evaluate the function to be maximized.

2. The maximum number of refining iterations (concentration steps), if any, within
each subsample.

3. The tolerance for the convergence of the estimate of β in the refining steps.
4. The number of best subsets resulting from the refining steps to be brought to

convergence.
5. The number of refining iterations for each best subset being brought to conver-

gence.
6. The tolerance for the estimate of β in the refining steps for each subset being

brought to convergence.
7. The tolerance for the estimate of scale in the best subsets.
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In calculations for the example in Sect. 3 we follow the recommendations of the
FSDA toolbox. Reference [19] show that inappropriate choices of some of these
tuning constants may lead to inconsistency of the resulting algorithms.

Perhaps even more important than these technical matters, are the statistical prob-
lems related to, in particular, the downweighting of observations.

1. There is a loss of simplicity in the tests related to parameter estimates. In their
Sect. 7.6, [25] point out that there may be alternative and equally plausible robust
variants of the asymptotic standard errors of estimated regression coefficients.
Reference [33] describe, and later exemplify, two such robust variants of the
usual t-test, which sometimes differ in the conclusions they lead to. There is no
guidance as to which is to be preferred in such circumstances.

2. Through the use of downweighting, the analyst loses the connection between
each unit and the parameter estimates and other statistically important quantities.
We note that this connection is maintained in the FS and other hard trimming
methods.
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Fig. 1 Vegetable products data. S estimation, optimal ρ function. Left-hand panel, plot of scaled
residuals. Right-hand panel, three measures of the correlations of adjacent residuals. The abrupt
switch virtually to LS at 0.20 is evident in both panels
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3 An Example of Monitoring

We illustrate the use of monitoring in the context of international trade, which is
an important field of application for the EU economy. For instance, [8] describe the
importance of careful statistical analysis of international trade data and some of the
challenges emerging in such an exercise. The dataset that we consider contains the
value and weight of n = 1,558 import transactions of vegetable products, such as oils
and seeds, to one specific EUMember State from a non-EU country. To illustrate the
usefulness ofmonitoring in understanding the properties of various robust estimators,
we compare S andMM estimation. Typically we require 50 robust regression fits per
analysis; a computational burden only made possible by the efficiency of the FSDA
robust library [31] and by the recent technical advances of [34].

In monitoring S estimators we vary the bdp from 0.5 to 0.01. For MM estimates
it is more convenient to monitor changes as the efficiency goes from 0.5 to 0.99.
In both cases we look at plots of all n residuals as a function of efficiency or bdp.
A useful diagnostic, summarizing the plot of residuals, is to plot correlation of the
ranks between the residuals at adjacentmonitoring values.Weconsider three standard
measures of correlation:

1. Spearman. The correlations between the ranks of the two sets of observations.
2. Kendall. Concordance of the pairs of ranks.
3. Pearson. Product-moment correlation coefficient.

If there is a clear division of the solutions into a robust fit and a non-robust one,
with a sharp break between them, this is clearly shown by the correlation plot. For
more complicated examples the point of transition is not so clearly visible. But the
structure of the residual plot is well summarized by looking at correlations.

Figure1 shows the plot of residuals for S estimation. There is a clear break in the
plot between bdp 0.21 and 0.20, as the robust fit changes to least squares. For the
LS fit there seems to be an almost symmetrical distribution of residuals, with around
half a dozen large positive outliers. The robust fit, for higher values of the bdp,
exhibits a highly skewed structure for the residuals. The constancy of the ranking
of the residuals over the two regimes is clearly shown in the right-hand panel of the
plot; all three correlations are virtually one, except for the break point between the
bdp of 0.21 and 0.20.

This figure is very different from that forMMestimation in Fig. 2. Here the pattern
of residuals is constant for all efficiencies in the range studied and similar to that for
the robust part of the S residuals in Fig. 1. The correlation plots show no change in
the pattern.

These results show an appreciable difference between S estimation and MM,
which is tuned to have a high efficiency for the parameters of the linear model. We
now explore the parameter estimates of the linear model and their relationship with
the data.

In these data there is a single explanatory variable. Figure3 shows how the esti-
mate of the slope changes with the bdp for S estimation and the efficiency for MM
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Fig.2 Vegetable products data. MM estimation, optimal ρ function. Left-hand panel, plot of scaled
residuals. Right-hand panel, three measures of the correlations of adjacent residuals. The skewed
distribution of residuals remains constant over the considered range of efficiency. There is no change
in the values of the correlation coefficients in the right-hand panel (note the vertical scale)

estimation. For S estimation the slope remains virtually constant, decreasing from
3.42 to 3.32, until, with a bdp of 0.20, it jumps up to 5.95. Thereafter it again decreases
slightly, with a minimum value of 5.18. On the contrary, forMM estimation the slope
decreases slowly from 3.40 to 3.32; the jump in values is missing.

The behaviour of the S slope that is revealed by monitoring is what might be
expected if there is a main population following a regression line and a cluster of
outliers at a position of high leverage. The right-hand panel of Fig. 3 shows five fitted
lines for S estimation. Those for high bdp down to 0.21 follow the lower line of data.
The fit calculated with bdp = 0.20 lies close to the upper line, for which there are
more observations than for the lower one. As the bdp further decreases the lines
move slightly towards lying between the two main lines, being attracted upwards by
the presence of a few large disconnected outliers, some with appreciable leverage.
The plot for MM lies throughout close to the lower line.

The conclusion from this analysis is that monitoring using S estimation alerts us
to the presence of a structure in the data that would not be so trenchantly revealed
by looking at the output from a single fit. Monitoring MM estimation, on the other
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Fig. 3 Vegetable products data. Left-hand panels, the estimated slope parameters for S estimation
(upper panel) and MM estimation (lower panel). Right-hand panel, the data and fitted lines using
S estimation with five different values of bdp

hand, does not indicate that there is an important departure from the single model
assumed to hold for the majority of the data. Perusal of Fig. 2 might, on the contrary,
suggest that a transformation of the data is needed to achieve a symmetrical error
distribution.

The results here from the comparison of S and MM estimation are in line with
those of the extended study of this kind of monitoring by [33] who conclude that
highly tuned methods like MM and τ estimation often reveal less about the structure
of the data than does S estimation. Of the four ρ functions they compare, they show
that Tukey’s bisquare and the closely related optimal function provide the most
informative monitoring. The hyperbolic ρ function, for some sets of data, is subject
to numerical problems. Here we have used the optimal function.

We return to these data in the next section. Before we do so, we note that it might
be expected that fitted lines for value against weight should go through zero. We
did repeat our analysis setting the regression intercept to zero, but found that the
conclusions were unaffected. Although, in some trading activities, there is a non-
zero intercept, being the cost of setting up an order, such an effect is more common
in domestic mail orders than in the kind of data we are analysing here.
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4 Robustness AgainstWhat?

Standard robust methods were developed for fitting a single model. In this section
we first describe a robust method for determining whether the data are a mixture
from more than one model, although there is the restriction that the models are all
of the same class. In the subsequent section we briefly discuss the more general, and
far broader, problem of robustness when the class of model, or models, also needs
to be identified.

4.1 Several Models: Clustering

The analysis of the trade data in Sect. 3 with monitoring shows that the robust S
fit and least squares differ. However there is no clear indication of what is causing
the difference. Of course, with a single explanatory variable, a simple scatterplot
indicates the structure. But, in general, there may be several explanatory variables
or so much data that perusal of individual scatterplots for all types of transaction is
impossible. We use the FS to provide a robust analysis of data when there are several
sources for the data. We need a robust method as we need to avoid the deleterious
effect of the outliers, the presence of which is evident in the figure.

The forward search achieves robustness by fitting the model to subsets of the data
of increasing size, where the subsets are sequentially chosen to contain observations
as close as possible to the fitted model. The introduction of outliers into the subset is
diagnostically revealed by plots of residuals against subset size as well as formally by
statistically tuned tests using the minimum deletion residual among observations not
in the subset. The method for a single population starts from a robustly chosen subset
ofm0 observations. However, if the data are amixture of observations generated from
more than one model, the robustly chosen initial subset S∗(m0) may lead to a search
in which observations from several models enter the subset haphazardly in such a
way that the various models are not revealed. Searches from more than one starting
point are necessary to reveal the more complicated structure of a mixture.

For finding clusters in multivariate data, [3] suggest running several hundred
searches from randomly chosen initial subsetsm0. At the beginning of the searchwith
regression models, a random start produces some very large residuals. But, because
the search can drop units from the subset as well as adding them, some searches are
attracted to specific regression lines. As the searches progress, the various random
start trajectories converge, with subsets containing the same units. Once trajectories
have converged, they cannot diverge again. As we see in Fig. 4, which is typical
of those for many data structures, the search is rapidly reduced to relatively few
trajectories, some of which show marked peaks. It is these that provide information
on the number and membership of the clusters.

The two peaks in Fig. 4 indicate the two linear structures that are apparent in Fig. 3.
The final peak in the plot results from the outliers, which are also evident in Fig. 3.
The next step in the analysis of the data is to ‘interrogate’ the peaks, taking many
of the units in the subset just before the peaks as large initial subsets for forward
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searches to confirm cluster membership. The availability of automatic procedures for
deciding cluster membership is an advance over many robust clustering procedures
which require prior information on the number of clusters and on the proportion of
the data to be trimmed, and so suffer from one of the main disadvantages of robust
methods listed in Sect. 2.

A final word is in order about the interpretation of the forward plot of deletion
residuals in Fig. 4. In all there are 1,558 observations. However, the two peaks come
atm = 1,174 and 1,310, which total much more than all the observations. There are,
however, an appreciable number of observations at low values of x ; due to variability
in the data, these could belong to either line. Straightforward clustering would be
unable to decide to which line such observations should be allocated.

4.2 WhichModel for the ‘Good’Data and HowMany Outliers?

The development of high-breakdown techniques, like S and MM estimation, has
been the mainstream of theoretical work on robust statistics for at least 25 years.
These methods are expected to work well in a contamination framework where the
data generating distribution, say G(y), is such that

G(y) = (1 − γ )G0(y) + γG1(y). (1)
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Fig. 4 Vegetable products data: forward plots of minimum deletion residuals from 200 random
starts with pointwise 1 and 99% limits. There appear to be two distinct groups (regression lines)
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In model (1), G0(y) and G1(y) denote the distribution functions of the ‘good’ and
of the contaminated part of the data, respectively, and γ < 0.5 is the unknown con-
tamination rate.

We speculate that another reason for the limited appeal of robust methods in
practical applications is the need to specify G0(y). Furthermore, very little is known
about both the theoretical and empirical behaviour of the techniques when G0(y) is
not normal. To motivate our claim, we observe that all high-breakdown estimators
require computation of a normalizing constant which ensures consistency when γ =
0. In the case of hard trimming, this constant is a scaling factor for the estimate of
dispersion and, in the case of soft trimming, a threshold above which observations
are given zero weight. As far as we know, explicit and computable formulae for
the normalizing constant exist only if G0(y) is the normal distribution and, indeed,
relevant real-world applications have been confined to this model.

Reference [10] propose a method for testing the hypothesis that G0(y) in (1) is
normal. The good power properties of their test seem to suggest that the empiri-
cal behaviour of high-breakdown techniques may be considerably different under
non-normal models, especially when G0(y) is skewed. Furthermore, they show the
potentially deleterious consequences of a naive approach to robustness which is often
implemented in practice, when standard methods are applied to the observations that
remain after outlier removal.

Even when G0(y) is the normal distribution, many high-breakdown procedures
show poor finite sample properties for estimation of the contamination rate γ . The
tendency to produce a plethora of spurious outliers has been shown in many studies,
starting from [12] and including [9]. We argue that this tendency has also been
a serious constraint on the dissemination of robust methods among practitioners.
As a consequence, we strongly advocate the use of robust techniques that are able
to provide effective control on the number of false discoveries, while keeping good
detection properties. References [6,7] proposemodified high-breakdown procedures
that can achieve this goal, while [30,33] and this paper point towards a flexible
monitoring approach.

5 Conclusion

We argue that there is compelling need for a reconciliation between robustness and
applied statistics. In this paper we have investigated some of the reasons that we
see as major disincentives to the routine use of standard robust methods. We have
also provided empirical evidence, in a regression setting and in a real-world problem
concerning international trade, of the advantages of a new approach to data analysis
based on monitoring.

We conclude by noting that our monitoring approach deserves further theoretical
investigation. A pioneering contribution in this direction, although in a somewhat
simplified setting, is the study of the asymptotic properties of the radius process of
[16]. Results for the forward search are provided by [11,26], while the properties
of the trajectories of the residuals computed from other high-breakdown estimators,
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like those given in Figs. 1 and 2, are still unexplored. Nevertheless, we trust that our
work will provide a positive contribution towards the desired reconciliation.
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