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Abstract: We describe a form of robust clustering using the forward search that
allows the data to determine the number of clusters. We also allow for outliers
and so do not force all units to be clustered. An example is given of the successful
clustering of data on Italian funds.
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1 Introduction

Classification methods are widely used in the financial services industry, for ex-
ample for identifying bad credit risks and stocks with desirable (or undesirable)
properties [5]. A powerful set of tools for such purposes are the statistical methods
of cluster analysis. Yet, despite the sensitivity of many of these methods to out-
liers or incorrectly specified structures, robust statistical methods are little used.
It is the purpose of the present paper to describe robust cluster analysis using the
forward search. This graphics rich robust approach to clustering uses the data to
identify the number of clusters, to confirm cluster membership and to detect out-
lying observations that do not belong to any cluster. An example is given of the
analysis of some financial data on the performance of funds.

Given the poor quality of much data, the low uptake of robust methods in fi-
nancial and economic areas is surprising. For example, regression is one of the
major statistical tools in applied economics with ordinary least squares the pre-
ferred method of estimation. Few publications in economics apply robust methods
in regression, despite the well-known susceptibility of ordinary least squares to out-
liers and [10] accordingly advocate the use of high-breakdown robust regression,
specifically least trimmed squares, and compare robust and non-robust parameter
estimates and associated t-values. These analyses are supplemented by those of
[1] who, in a companion paper to this one, uses the forward search combined with
graphics to reveal the structure of the data. The present paper applies similarly
illuminating methods to clustering multivariate data.

Our procedure, related to robust methods for detecting outliers, uses robust
Mahalanobis distances to identify and define the clusters in the data. The use of
robust methods for outlier detection was popularised by [7]. A robust method with
exploratory graphics for the detection of outliers in multivariate normal data is de-
scribed by [9]; [8] provide a fast algorithm for the calculation of the robust distances.
The robust estimates of means and covariances that we use in the calculation of
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the Mahalanobis distances in this paper come from the forward search, in which
subsamples of increasing size are used for parameter estimation. A wide variety of
applications of the forward search in the analysis of multivariate data are given by
[3]. Their analyses typically rely on inspection of forward plots of robust distances.
However, in order to provide sensitive inferences about cluster membership, it is,
as we show, necessary to augment such plots with envelopes of the distributions of
the statistics being plotted.

Mahalanobis distances from the forward search are used by [6], in combination
with envelopes, to give tests for multiple outliers in multivariate data. For the
detection of outliers from one population they use single forward searches from a
carefully chosen starting point. The required envelopes can be found by simulation,
which will be time consuming if outliers are dropped sequentially, so that envelopes
are required for a series of sample sizes, as they are in the example in our §4, where
we use approximations to the envelopes derived from those in [6].

For cluster definition, as opposed to outlier identification, several searches are
needed, the most informative being those that start in individual clusters and con-
tinue to add observations from the cluster until most observations in that cluster
have been used in estimation. There is then a clear change in the Mahalanobis
distances as units from other clusters, which are outliers from the cluster being
fitted, enter the subset used for estimation. This strategy seemingly requires that
we know the clusters, at least approximately, before running the searches. But we
instead use many searches with random starting points to provide information on
cluster existence and definition. Except at the beginning of the search, [2] show
that the same set of envelopes is appropriate for searches with a random start and
for those in which the starting point is selected with care.

Robust Mahalanobis distances and the forward search are defined in §2. In §3.1
we apply forward clustering to a synthetic data set with three clusters. These are
recovered by our method, but missed by k-means clustering in §3.2, where use of a
standard statistic indicates five groups. Our analysis of the financial data is in §4.

2 Mahalanobis Distances and the Forward Search

The main tools that we use are plots of Mahalanobis distances. The squared dis-
tances for the sample of n v-dimensional observations are defined as

d? = {yi — )} Sy — i}, (1)

where [ and 3 are the unbiased moment estimators of the mean and covariance
matrix of the n observations and y; is v x 1.

In the forward search the parameters p and ¥ are estimated from a subset of m
observations, yielding estimates ji(m) with ji(m); = g; and 3(m) with 2(m);;, =
(y; — 9;)" (yr — yi)/(m — 1). Here y; and y;, are m x 1. From this subset we obtain
n squared Mahalanobis distances

d; (m) = {y; — p(m)} TS~ (m){y; — p(m)}, i=1...,n (2)
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To start the search for cluster identification we take a random sample of mg =
v + 1 observations, the minimum size for which ¥ can be estimated. We require
this subset to be as small as possible to maximize the probability that all members
of S(mg) come from the same cluster. This subset of mg observations grows in
size during the search in such a way that non-cluster members will be excluded
with high probability. When a subset S(m) of m observations is used in fitting we
order the squared distances and take the observations corresponding to the m + 1
smallest as the new subset S(m + 1). Usually this process augments the subset
by one observation, but sometimes two or more observations enter as one or more
leave.

To detect outliers we examine the minimum Mahalanobis distance amongst
observations not in the subset

dmin(m) = mind;(m) i ¢ S(m). (3)

If observation m + 1 is an outlier relative to the other m observations, this distance
will be large compared to the maximum Mahalanobis distance of observations in the
subset. All other observations not in the subset will, by definition, have distances
greater than dp,i,(m) and will therefore also be outliers.

When the observations come from a single multivariate normal population with
some outliers, these outlying observations enter at the end of the search. However,
if clusters are present and a search runs within a single cluster, the “outliers”
will occur when the cluster is exhausted. Our bounds for a single multivariate
population will then apply to this part of the search where information about
clusters may be found.

3 The Detection of Clusters

We look at a synthetic examples with three clusters and some outliers. We show
how random start forward searches combined with envelope plots of forward Maha-
lanobis distances lead to the detection of clusters. We then interrogate the forward
plot to obtain an initial definition of the clusters. The example is used to de-
scribe our new procedures for cluster definition. We also compare our results with
k-means clustering. We indicate how the information gained from these initial
forward searches can be used as the basis of a definitive clustering.

3.1 Forward Clustering

The two-dimensional data were simulated to have three clusters of 150 slightly
correlated observations with 30 lightly clustered outliers. The left-hand panel of
Figure 1 shows the data; the clusters are not indicated. We used 300 random start
forward searches to elucidate the structure of the data. The results are shown in the
right-hand panel of the figure which is a forward plot of the values of the minimum
Mahalanobis distances dpi,(m). The forward searches fall into four classes: those
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Figure 1: Example 1: three clusters and outliers. Scatter plot of the data and
forward plot of minimum Mahalanobis distances from 300 random starts with 1%,
50% and 99% envelopes. Three clusters are evident around m = 150. Trajectories
in grey always include units from both groups

that start, or soon move into, one of the three groups and those that, from the
beginning of the search, include observations from more than one group. These are
shown in grey on the plot. From around m = 110 the searches with observations
from only one group start to lie systematically above the envelopes.

The shape of the envelopes is important. As the curves in Figure 1 of [2] show,
the plots for smaller n and given m rise above those with larger n as m increases, the
values at the end of the search hardly depending on n. The curves in Figure 1 here
are behaving as those from samples of around 150. However, by m = 180 the three
curves have returned within the envelopes as relatively remote observations from
other groups enter the subsets. Shortly thereafter there are three forward plots,
in which a common mean and common covariance matrix are calculated from the
observations in two of the three groups. Around m = 300 observations from the
group not so far included start to enter the subset and, by m = 370 a common
trajectory has been established; all 300 searches have converged.

The three peaks in the right-hand panel of Figure 1 suggest that there are three
clusters. We now move to cluster membership. Figure 1 shows that, in the last
third of the search, all 100 searches have converged in the sense that, for each m,
there is one common set of observations S(m) and one value of d,i, (m). Once two
searches have the same value of S(m) they will continue to follow the same path,
wherever they started from, producing identical values of dp,i,(m). We can say
that the residual trajectories of the two searches are identical. Figure 1 shows that
initially there are many different values of dpyi,(m) and so many distinct residual
trajectories. We now see how the number of values of di, (m), and so the number
of residual trajectories, declines with m.

The left-hand panel of Figure 2 shows how the number of different values of
dmin(m) decreases with m. Initially there are 300 trajectories. The left-hand panel
of the figure shows that the number decreases rapidly, reaching 1 at m = 366 for this
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Figure 2: Example 1: number of values of dyi,(m) and distribution of values of
dmin(140)

set of simulations. We are interested in the subsets S(m) for those trajectories where
there is evidence of a cluster structure. From Figure 1 this is around m = 140, just
before the peak values, where the clusters may be beginning to be contaminated
by members of other groups. To find the clusters we interrogate the right-hand
panel of Figure 1 at this point to find the subsets giving rise to the larger values of
dmin(140)'
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Figure 3: Example 1: entry plot and scatter plot showing identified members of
the third cluster at m = 140

The right-hand panel of Figure 2 is a plot of the frequency distribution of the
values of dpin (140). The vertical lines in the plot correspond to the 1%, 50% and
99% points of the envelope at m = 140. There are thirteen values of dy,;n(140) and
so thirteen residual trajectories. The largest value occurs 86 times and the two next
highest 119 and 70 times. All except 25 trajectories therefore seem to be within a
cluster. The membership of the subsets for each value can be illustrated using an
‘entry’ plot.

The entry plot is a way of representing the membership of S(m) as a search
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progresses. For each m those observations included in the subset are plotted with
a symbol, so that the plot becomes darker as m increases. Such plots are discussed
in [3, §7.3.3]. Here we need to combine information from several searches.

The left-hand panel of Figure 3 is the entry plot for one of the 86 searches with
the most extreme value of dy;,,(140) in Figure 2. Since the searches have converged
at m = 140, all will have the same residual trajectory, so it does not matter which of
the 85 we choose to plot. For m < 140 we select randomly from one of these searches
to obtain a typical plot. Figure 3 shows clearly that we have found the trajectories
that include observations from those numbered 301 - 450. The members of this
cluster are unambiguously identified. The entry plot also shows that observations
from the second group are next to enter the subset and that the outliers, at the
top of the plot, are the last to enter. The right-hand panel of Figure 3 shows the
scatter plot of the data, with the observations in the subset at m = 140 plotted
with crosses. The search has clearly identified a meaningful cluster.
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Figure 4: Example 1: entry plot and scatter plot showing identified members of
the first cluster at m = 140

Likewise, Figure 4 shows the cluster of observations numbered 1 - 150 and their
positions in the data. The third highest value of dy,;,(140) in Figure 2 gives rise to
a similar entry plot, not shown here, in which observations from those numbered
151-300 have been identified as a cluster. Finally Figure 5 is for the fourth highest
value of dy;(140) in Figure 2. Here there is no cluster structure, observations
from clusters 1 and 3 being in the subsets throughout. This is in line with the
interpretation of Figure 1 where the fourth highest trajectory at m = 140 is within
the envelopes. The scatter plot matrix in the right-hand panel of Figure 5 shows
that the search is identifying a long thin cluster with units from both groups and
those in between. The other, lower values of dpi,(140) in Figure 2 likewise give
subsets containing units mostly from two groups.

The results shown in Figures 3, 4 and 7?7 clearly indicate how well our cluster
identification procedure works. Since the clusters correspond to the natural order
of the units, we are able to check that our method has achieved what is required.
But permutation of the labels of the units, corresponding to not knowing the clus-
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Figure 5: Example 1: entry plot and scatter plot for the fourth largest value of
dmin (140); the search includes units from clusters 1 and 3

ter membership, would destroy this structure. Nevertheless the division of units
provided by Figure 1 and the other plots provides excellent initial clusters for the
further investigation demonstrated at the end of §4

3.2 Clustering with k-Means
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Figure 6: Example 1: clustering with k-means. Calinski-Harabasz index and the
five “clusters”

Despite the clear appearance of three clusters in Figure 1, the determination of
cluster numbers is a problem with many methods. As an example we apply k-means
clustering to our data, without standardizing. For the selection criterion we use
the Calinski-Harabasz index [4]. The left hand panel of Figure 6 shows the plot of
the index against the number of groups. Large values of the index are desirable, so
five groups are indicated. The right-hand panel of Figure 6 shows the scatter plot
of the data with the resultant clustering. In effect, the second group, identified in
Figure 7?7, has been split in half and the outliers form the fifth cluster. It is hard
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to know how to progress from here, whereas, with the forward search, it is natural
to study the effect of the individual inclusion of each unit in a cluster.

4 Financial Data

We now apply our forward search method to the clustering of the “Financial Data”
in Table A.16 of [3]. There are measurements on three variables monitoring the
performance of 103 investment funds operating in Italy. The numbering of the data
corresponds to two different kinds of fund. We investigate whether this information
can be recovered.

Mahalanobis distances

Subset size m

Figure 7: Financial data: forward plot of minimum Mahalanobis distances from 200
random starts with 1%, 50% and 99% envelopes. Two clusters are evident around
m =50

Figure 7 shows the forward Mahalanobis distances from 200 random starting
points. There are two trajectories with high values around m = 50: one with twin
peaks and one still rising. To avoid including outliers, we take our cut marginally
earlier at m = 48. The left-hand panel of Figure 8 shows that we have two trajec-
tories with high values and high frequencies. In the right-hand panel we give the
entry plot for a search giving the highest value of dy,;n(48). The separation into
two groups is virtually complete. The entry plot for the second highest value of
dmin (48) gives a complementary division.

We now confirm this provisional clustering with single searches starting with
mg = v + 1 units taken in turn from each provisional cluster. Figure 9 shows the
plot for group 1 (the larger group in Figure 7) on which we have superimposed
envelopes for increasing sample sizes. In the first panel n = 52 and all observations
at the end of the search up to this value lie inside the envelopes. But for n = 53,
in the second panel, and, even more so, n = 54, the last units to enter are outliers.
This cluster therefore contains 52 observations. Similarly for cluster 2 we use the
envelopes and find that n = 46. Thus, out of 103 units, 98 are clustered and 5 are
remote from either cluster. Figure 10 shows the three panels of the scatter plot
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Figure 8: Financial data: distribution of values of dp,i,(48) and entry plot for the
largest value of dpin(48). The first cluster is identified

matrix of the data, with our two clusters marked. The unclustered units are seen
to lie between or remote from the two clusters.
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Figure 9: Financial data: forward plot of minimum Mahalanobis distances from
200 random starts with 1%, 50% and 99% envelopes for n = 52,53 and 54. The
cluster contains 52 observations

Our method of robust clustering has provided a simple way of clustering in which
we let the data determine the number of clusters. Unlike standard methods, we
are also able to allow for outliers, rather than forcing all units to be clustered. The
future of our work includes automatic clustering based on extracting the information
from figures such as 1 and 7.
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