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a b s t r a c t

Heteroskedastic regression data are modelled using a parameterized variance function.
This procedure is robustified using a method with high breakdown point and high
efficiency, which provides a direct link between observations and the weights used in
model fitting. This feature is vital for the application, the analysis of international trade
data from the European Union. Heteroskedasticity is strongly present in such data, as are
outliers. A further example shows that the newmethod outperforms ordinary least squares
with heteroskedasticity robust standard errors, even when the form of heteroskedasticity
is mis-specified. A discussion of computational matters concludes the paper. An appendix
presents the new scoring algorithm for estimation of the parameters of heteroskedasticity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We provide a new robust method for the analysis of heteroskedastic data with the linear regression model which is both
efficient and has high breakdown point. Our development is driven by the need for diagnostic and robust exploration of
international trade data in which consistently anomalous price–quantity relationships may indicate money laundering or
tax fraud. An introduction to the vast scale of the problem is in The Economist (2014). Our example in Section 4 is of imports
into the European Union. These data require careful analysis in order to detect the outliers and other properties which may
be evidence of illegal behaviour. Because of the vast quantities of data involved, appropriate automatic methods of robust
analysis are essential. We provide these by combining robustness with a form of weighted regression in which the weights
modelling heteroskedasticity are also robustly estimated. Despite the specific motivation of our development, the resulting
form of robust regression is both powerful and of generally applicability.

Methods for the robust analysis of homoskedastic regression data are well established (Maronna et al., 2006). Likewise
methods for non-robust heteroskedastic regression analysis arewidely described in econometrics (Greene, 2002, 2012). The
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methodological contribution of our paper is to provide amethod for robust heteroskedastic regressionwhich generalizes the
form of heteroskedasticity described, in a non-robust context, by Harvey (1976). We give a link to publicly available Matlab
code. Our subjectmatter contribution is to present the first robust heteroskedastic analysis of trade data. Our analysis reveals
the presence of two appreciable outliers as well as the potential presence of data from more than one regression line.

In order to robustify heteroskedastic regression, it is helpful to divide the methods of robust regression into three
categories. Following Riani et al. (2014b) these are:

1. Downweighting. M estimation and derived methods, as described in Maronna et al. (2006);
2. Trimming, as defined byMaronna et al. (2006, p. 132), includes Least Trimmed Squares (LTS) and LeastMedian of Squares

(LMS) (Hampel, 1975; Rousseeuw, 1984) in which the amount of trimming is determined by a pre-specified factor and
3. Adaptive trimming. In the Forward Search (FS) (Atkinson et al., 2010) the observations are (0, 1) trimmed, but the amount

of trimming is found adaptively, providing high efficiency.

M estimation is the robust method most explored for heteroskedastic regression. An approach through weighting is in
Chapter 4 of Carroll and Ruppert (1988). Further results are sketched by Welsh et al. (1994). The references to trimming
are more recent. Cheng (2011) uses the model of Harvey (1976), combined with the FS and a trimmed likelihood for robust
heteroskedastic regression. Neykov et al. (2012) use trimming in robust estimation of a general quasi-likelihood model,
including the special case of heteroskedastic regression.

A major difficulty with downweighting for our intended applications is the absence of a clear relationship between
individual observations and their effect on inferences drawn from the data. In addition, downweighting is also ruled out, as
is non-adaptive trimming, by the comparative studies of Riani et al. (2014a,b). The results of Riani et al. (2014a) indicate,
for finite sample sizes, that the adaptive downweighting associated with the FS provides robust parameter estimates with
lower bias and variance for contaminated data than the other methods. In addition, Riani et al. (2014b) show that the FS
leads to data analyses which are more informative about the pattern of departures from the linear model than are the other
methods. Accordingly, we use the FS as the basic robust method for handling heteroskedasticity in regression. Johansen and
Nielsen (2016a) discuss some theoretical aspects of the FS.

For the data which initiated our study, it is appropriate to assume that the conditional variance of the observations
depends on a linear function of the explanatory variables in the regression, the parameters of which are to be estimated.We
describe our model in Section 2 and comment on the relationship with Harvey’s model.

Section 3 introduces the Forward Search (FS), which provides a robust, diagnostic fit to a single regression model. The
search proceeds by fitting the model to subsets of the data of increasing size. Statistical properties of the method for outlier
detection are also in Section 3, with the details of the procedure presented in Appendix B. In Section 4 the heteroskedastic
FS is illustrated on an example of 1100 observations. Forward plots of residuals and parameter estimates as the subset
size increases clearly demonstrate the properties of the method, including outlier detection. Weighted least squares can be
considered as ordinary least squares in the space of weighted responses and explanatory variables. Comparison of results
for the weighted and unweighted forms of the model leads to a clear understanding of leverage in weighted least squares.

In Section 5we examine the stability of theweights calculated during the FS and the insensitivity of the search to starting
values. We proceed further in Section 6 to two more statistical analyses of our example: the first illustrates the importance
of using an analysis that accommodates heteroskedasticity. The second shows howusing ‘‘brushing’’ tomonitor the progress
of the FS reveals important data structures.

We require a method of robust heteroskedastic regression also to be robust to the specification of the form of
heteroskedasticity. A very general method (White, 1980) uses ordinary least squares (OLS) combined with ‘‘heteroskedastic
robust’’ standard errors. In Section 7 we show how poorly this ‘‘heteroskedastic robust’’ procedure can perform when
compared with a model with correctly specified heteroskedasticity. More importantly, we demonstrate that our method
is never less efficient than OLS evenwhen the skedastic relationship is incorrectly specified.We concludewith an indication
of the computational efficiency of ourmethod. Details of the scoring algorithm are in Appendix A. The emphasis in our paper
is on the public provision of a method for robust heteroskedastic regression.

2. Heteroskedastic regression

2.1. Models for non-constant variance

The data that stimulated this research have a relatively simple structure, forwhichwe can assume additive normal errors.
Our model for heteroskedastic regression can be written

yi = βT xi + σiϵi (i = 1, . . . , n),

where the errors ϵi have a (homoskedastic) standard normal distribution, ϵi ∼ N (0, 1). We parameterize the variance
function as

σ 2
i = Var yi = σ 2

{1 + exp(zTi γ )}, (1)

a form that is used in the analysis of pharmacokinetic data (Fedorov and Leonov, 2014).
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In our example the variables x and z are identical. However, all elements of the two parameter vectors are distinct. Then
the information matrix is block diagonal. For given γ estimation of β is by weighted least squares and σ 2 is estimated from
the residual sum of squares. For given γ the weights are defined as

wi = σ 2/σ 2
i = {g(zTi γ )}−1.

It is convenient to write

yWi =
√

wiyi, xWi =
√

wixi and W = diag{wi}.

Then

β̂W
|γ = (XTWX)−1XTWy,

although we shall usually notationally suppress the dependence of β̂W on γ . Thus β̂W is found by weighted regression of y
on x or, equivalently, by unweighted regression of yW on xW . We find it informative to consider data analysis in both these
spaces. Since β̂W is found by least squares regression, it inherits the affine equivariance of least squares estimators.

It remains to estimate γ . Numericalmaximization of the likelihood is one possibility. However, sincewe need to estimate
the parameter for each subset of the data in the FS, of which there are almost n, we used a more efficient scoring algorithm,
presented in Appendix A. The importance of efficient numerical methods of estimation increases if we need to simulate
several thousand searches in order to establish distributional properties.

An important property of (1) is that, provided σ 2 > 0, the variance does not approach zero as exp(zTi γ ) → 0. A
combination of relatively constant variance, combined with regions of appreciable heteroskedasticity is common in some
forms of data, including the data we analyse in Section 4.

A simpler model for heteroskedasticity with skedastic equation

σ 2
i = σ 2 exp(zTi γ ), (2)

for which the variance can go to zero, was introduced by Harvey (1976). The properties of heteroskedastic regression with
(2), together with a scoring algorithm, are described and illustrated by Greene (2002, §11.7) and Greene (2012, p. 554–556).
The algorithm is similar in structure to that in Appendix A. Although the algebraic expressions for (2) are easier to write
down than those for model (1), the difference in computational complexity is negligible. Of course, the choice of a skedastic
equation must depend on the data.

3. The forward search for weighted regression data

The forward search used in this paper starts from a very robust LMS fit with 50% breakdown point and then achieves
greater efficiency by fitting the model to subsets of the data of increasing size.

For the moment we assume the weights w are known. In the weighted regression model for all n observations, yW =

XWβ + ϵ, β is p× 1 and the normal theory assumptions are that the errors ϵi are i.i.d. N(0, σ 2). The weighted least squares
estimator of β is β̂ . Then the vector of n least squares residuals is e = yW − ŷW = yW − XW β̂ = (I − H)yW , where
H = XW

{(XW )T (XW )}−1(XW )T is the ‘hat’ matrix, with diagonal elements hi and off-diagonal elements hij. The residual
mean square estimator of σ 2 is s2 = eT e/(n − p) =

n
i=1 e

2
i /(n − p).

The FS algorithm starts from the LMS solution found by estimation on a selected subset of p observations. Observations
in this subset are intended to be outlier free. If n is moderate and p ≪ n, the choice of the initial subset can be achieved by
exhaustive enumeration of all ip distinct subsets of size p. The parameters of the model are estimated by least squares on
each subset. Let the least squares residual for unit i (i = 1, . . . , n) from subset k be eik. We take as our initial subset the
p-tuple S∗(p) which satisfies

e2
[med],S∗(p) = min

k
{e2

[med],Sk(p)},

where e2
[j],Sk(p)

is the jth ordered squared residual among e2ik (i = 1, . . . , n) and med is the integer part of (n + p + 1)/2. If
the number of subsets is too large for exhaustive enumeration, we use some moderate number of samples like 1000.

Although the LMS estimate is highly robust it can have very low efficiency (Rousseeuw and Leroy, 1987). In Section 5
we present some numerical evidence of the consequences of this instability. We maintain the high breakdown point but
increase efficiency by increasing the size of the subsets used in fitting, with the subset of size m + 1 chosen to be as close
as possible to the model fitted to m observations. The introduction of outliers into the subset is diagnostically revealed by
plots of residuals against subset size as well as formally by statistically tuned tests.

The size, m, of the subsets is such that m0 ≤ m < n. Let S∗(m) be the subset of size m found by FS, for which the matrix
of regressors is XW (m). Least squares on this subset of observations yields parameter estimates β̂(m) and s2(m), the mean
square estimate of σ 2 on m − p degrees of freedom. The m × m diagonal weight matrix has entries wi(m) calculated from
the estimated parameter γ̂ (m) of the skedastic equation. Residuals can be calculated for all observations including those
not in S∗(m). The n resulting least squares residuals are

ei(m) = yWi − β̂T (m)xWi .
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The search moves forward with the augmented subset S∗(m + 1) consisting of the observations with the m + 1 smallest
absolute values of ei(m).

The consistency of the parameter estimates generated by the FS is proved by Cerioli et al. (2014) with further results on
its robustness given by Johansen and Nielsen (2016b). These results arise from the use of maximum likelihood estimates in
the FS with known weights. However, we also use maximum likelihood in estimation of the weights so that, in the absence
of outliers, these estimates also converge to the population values. The numerical results of Section 5 show how surprisingly
stable the estimated weights are over a large part of the search.

An alternative to the use of LMS for the starting subset of the search is Least Trimmed Squares, which has negligible
effect on the subsequent properties of the FS. Further numerical results in Section 5 show that starting the search several
times from random starting points leads to stable robust and efficient solutions. As we explain in Section 5, the robustness
is generated by the search itself adding and deleting observations, not by the starting point.

To test for outliers the deletion residual is calculated for the n − m observations not in S∗(m). These residuals, which
form the maximum likelihood tests for the outlyingness of individual observations, are

ri(m) =
yWi − β̂T (m)xWi
s2(m){1 + hi(m)}

=
ei(m)

s2(m){1 + hi(m)}
, (3)

where the leverage

hi(m) = (xWi )T [{XW (m)}T {XW (m)}]−1xWi .

Let the observation nearest to those forming S∗(m) be imin where

imin = arg min
i∉S∗(m)

|ri(m)|.

To test whether observation imin is an outlier we use the absolute value of theminimum deletion residual, namely |rimin(m)|,
as a test statistic. If the absolute value is too large, the observation imin is considered to be an outlier, as well as all other
observations not in S∗(m).

In Section 4 we use diagnostic plots of the evolution of |rimin(m)| with m in order to reveal the structure of the data.
For formal testing we need a reference distribution for ri(m) in (3). If we estimated σ 2 from all n observations, the statistics
would have a t distribution on n−p degrees of freedom. However, in the searchwe select the centralm out of n observations
to provide the estimate s2(m), so that the variability is underestimated. To allow for estimation from this symmetrically
truncated distribution, we take s2T = s2(m)/c(m, n) as our approximately unbiased estimate of variance. In the robustness
literature c(m, n) is called a consistency factor (Maronna et al., 2006). See Riani et al. (2009) for a derivation from the general
method of Tallis (1963).

The test statistic |rimin(m)| is the (m + 1)st ordered value of the absolute deletion residuals. To find its distribution we
adapt the order-statistic argument of Riani et al. (2009) in which envelopes were required for the Mahalanobis distances
arising in applying the FS tomultivariate data. Herewe are considering the absolute values of t distributed random variables
and obtain the confidence level γ as

γ = 1 − F2(n−m),2(m+1)


m + 1
n − m


1

2Tm−p{rmin(m)σT (m)}
− 1


, (4)

for m = m0,m0 + 1, . . . , n − 1. In (4), F and T are the c.d.f.s of the F and T distributions. There is appreciable curvature in
the plots of these envelopes for the minimum deletion residuals; as m → n, the envelopes increase rapidly, since, even in
the absence of outliers, large residuals occur at the end of the search.

Finally, to avoid the problem of multiple testing (one outlier test for each value of m) we adapt the rule of Riani et al.
(2009) to obtain a procedure for regression data with a samplewise size of around 1%. We run the FS monitoring the bounds
from (4) until we obtain a ‘‘signal’’ indicating that observation mĎ, and therefore succeeding observations, may be outliers,
because the value of the statistic lies beyond a threshold calculated from the bounds and depending on the value of m. The
conventional envelopes shown, for example, in Fig. 2, consist roughly of two parts; a flat ‘‘central’’ part and a steeply curving
‘‘final’’ part. Our procedure for the detection of a ‘‘signal’’ takes account of these two parts. Details of this procedure are in
Appendix B.

4. Example: International trade data

These international trade data record the transaction value and amount of imports of individual goods into the EU. For a
specific quality of a good from an individual supplier there should be a straight line relationship between value and quantity,
although the relationship may be different for different qualities and different suppliers. There may also be numerous
outliers due to misrecording of the values of the two variables, or due to erroneous coding of goods. Interest is in detecting
price–quantity relationships that are consistently anomalous; these may indicate money laundering or tax fraud.

The trade data with which we are concerned have non-negative values of the single explanatory variable x. Zero values
in this case do not occur, but the data typically containmany values close to zero, for small transactions. An advantage of our
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Fig. 1. Scatterplot of value against quantity (scaled to have a maximum of one) for 1100 transactions (imports into the EU). There are two appreciable
outliers for low values of x.

Fig. 2. Left-hand panel; forward plot of the values of the absolute minimum deletion residual |rimin(m)| from n = 550. Right-hand panel zoom for the last
50 observations, clearly showing the extreme nature of the outliers; 1%, 50%, 99%, 99.9%, 99.99% and 99.999% envelopes.

model for heteroskedasticity (1) compared to Harvey’s (2) is that we avoid excessive weights for such small observations.
We find it convent to reparameterize (1) as

σ 2
i = σ 2(1 + θxα

i ) so that wi = 1/σ 2
i ,

which follows by putting zT = (1 log x), when γ T
= (log(θ) α).

As an example we analyse the 1100 observations for an import into the EU plotted in Fig. 1. The data seem to have a
simple structure, being apparently heteroskedastic with two clear outliers for low values of x. It is a characteristic of the
human eye that it tends to find lines in the data for high values of x. Since economically important frauds tend to occur for
such values, our statistical procedure should provide a firm distinction between outliers and fraudulent observations.

For numerical purposes and without loss of generality, we scale x to lie between 0 and 1, dividing by themaximum value
of x. We fit a linear regression model with intercept since even small transactions often incur fixed costs, regardless of size.
In this example we allow the scoring algorithm a maximum of 100 iterations and impose maximum values of 10 on the
estimates of the parameters α and log(θ), although these bounds are not, in fact, needed. The resulting forward search for
heteroskedastic regression takes longer than the search for homoskedastic because we have to estimate θ and α for each
subset size m. The forward plots of the minimum deletion residuals are in Fig. 2. The plot in the left-hand panel is from
n = 550; the plot in the right-hand panel is a zoom, focusing on the last 50 observations to enter the search. The overall
structure is clear; the right-hand panel shows the extreme nature of the two outliers. Otherwise, in both plots, there is no
further evidence of appreciable outliers; for most of the search the observed values of the statistic lie close to the median of
the distribution.

The top left-hand plot of Fig. 3 shows the scatterplot of the data with the two outliers plotted as crosses. These are, of
course, the outliers thatwere evident to the naked eye in Fig. 1. The other three panels provide forward plots of the estimates
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Fig. 3. Top left-hand panel: scatterplot of the data with the last two observations to enter the search indicated by . Top right-hand panel: forward plot
of α̂. Bottom panels, forward plots of log(θ̂) and σ̂ 2 . There is a dramatic effect of the two outliers on both these estimates at the end of the search.

of the parameters. The values of α̂ in the upper right-hand panel are comparatively stable, trending down from around 2.5
to 1.8 and then up again towards 2, before there is a sudden change at the end of the search; the inclusion of the outliers
causes a sudden change in the relationship between x and the variance σ 2

i . These values are typical of those for α̂ we have
found in the analysis of numerous datasets; almost invariably, the estimates lie between 1.5 and 3 until outliers or other
non-null data structures are included in the subset S∗(m).

For much of the search the larger values of θxα are appreciably greater than one. However, with the settings we use for
the scoring algorithm, the estimates of both θ and σ 2 are well defined. At the end of the search, the two outliers enter the
subset and reduce the relationship between the variance σ 2

i and the value of x. At stepm = n − 2 the value of log θ̂ is 7.24,
reducing to 3.96 when m = n; the estimate of σ 2 increases in compensation from 0.054 × 106 to 2.837 × 106. Although,
in general, comparing variance estimates from differently weighted regressions may not be meaningful, the stability of the
weights revealed in Section 5 allowus to conclude that these large changes, particularly in the estimate ofσ 2, clearly indicate
the incorporation of outliers into the subset of data used in parameter estimation.

We now look at the prediction intervals for a new observation Y (x) in the original (unweighted) space for which β̂W

provides the best estimate of β , with variance σ 2(XTWX)−1, if the weights are known. In the original space the variance of
a new observations is σ 2

i and the prediction is xT β̂W ; accordingly, the variance of prediction is σ 2
i + σ 2xT (XTWX)−1x. Fig. 4

shows these prediction limits. The parameter estimates used to calculate the limits exclude the last two observations and
the limit gives an interval with a nominal content of 99%. In this scale the plots of the limits are virtually straight lines. The
two outliers lie well outside the limits. A few other observations also lie just outside.

This variance calculation ignores any effect of estimation of the parameters θ and γ in theweights. Fig. 5 shows the results
of 5000 simulations of envelopes for the absolute minimum deletion residuals when θ and γ are estimated compared with
simulated envelopes in the absence of heteroskedasticity. For a sample of this size, there is no discernible difference between
the two sets of 50% and 99% envelopes, except at the very beginning of the search. Agreement with the lower limit is not
quite so good, but it is large values of the residuals that are of interest. For smaller sample sizes andmore extreme quantiles
the agreement is not quite so good. However, for our example, the agreement is such that the effect of estimation can be
ignored.

We now consider estimation in theweighted scale of xW and yW , which enables consideration of leverage in theweighted
least squares fit. Fig. 6 is the very different plot of the prediction limits in thisweighted scale. Now the prediction is (xW )T β̂W .
For large θ̂ as we have here, σ 2

i ∝ xα
i , so that w ∝ x−α and xW ∝ x1−α/2. With α̂ close to 2, xW is virtually constant, as the

figure shows. The prediction variance is now σ 2
{1 + (xW )T (XTWX)−1(xW )}. As the figure shows, the prediction limits are

virtually horizontal and only very slightly curved.
This new scale is that of homoscedastic estimation. The two outliers, which are for small values of x, where the variance

σ 2
i is relatively small, are seen to be more extreme in Fig. 6 than in Fig. 4. The other interesting feature of Fig. 6 is that,
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Fig. 4. 99% prediction intervals for a new observation in the original space of the observations using parameter estimates from m = n − 2; the two
outliers.

Fig. 5. Comparison of empirical envelopes. 1%, 50% and 99% envelopes based on 5000 simulations. Continuous lines, homoskedastic search; dashed lines,
estimated heteroskedasticity.

compared to Fig. 4, the observations cluster at the right-hand end of the plot, that is for high values of xW . In fact, in the
weighted space used for homoscedastic estimation, there is a series of leverage points for low values of xW , which include
one outlier.

To check the effect of these leverage points, we trimmed all observations with xW < 0.011, leaving 1081 units including
only one of the two original outliers. Such trimming is suggested, in a non-robust context, by Davidian and Carroll (1987).
Fig. 7 shows the new prediction interval with parameter estimates from 1080 units, with the outlier excluded. The nonlinear
structure of the fitted model in the weighted space is now evident. However, in the original space the fit is still linear and
we receive a plot very much like Fig. 4. An important feature of the plot is the concentration of units with values of xW close
to 0.041. These units provide virtually no information on the skedastic relationship and account for the variable parameter
estimates evident in Fig. 3.

5. Stability of the search and insensitivity to the starting point

We first illustrate the extreme stability of the weights wi(m) for a search starting from an LMS subset. The plot in Fig. 8
shows the weights for a randomly selected subset of 100 observations, plus, represented by heavier lines, the two outliers.
There is virtually no fluctuation in the weights for these last 50 observations. The trajectories of the weights in the plot do
not cross until the very end of search when there is a modification in all weights as the two outliers are included.

The FS used in this paper starts from an LMS subset of 2 subsets. This assures high breakdown, but is inefficient and
unstable. Asm increases the efficiency, and so the stability, of the estimates increase. Fig. 8 shows a forward plot of absolute
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Fig. 6. 99% prediction intervals for a new observation in the weighted space of xW and yW using parameter estimates from m = n − 2. The two outliers
are revealed as very extreme.

Fig. 7. 99% prediction intervals for a new observation in the weighted space of xW and yW ; leverage points excluded, leaving 1081 units. Parameter
estimates from 1080 observations. There is a concentration of units around xW = 0.041.

minimumdeletion residuals for 300 searches through the international trade data starting from randomly chosen subsets of
size 2. The plot initially showsmuch fluctuation but, by halfway through the data, all 300 plotted trajectories have converged
to a single trajectory, identical to that obtained using the LMS starting subset shown in the left-hand panel of Fig. 2. The
convergence occurs because at each step in the FS we reorder all n residuals; as a consequence observations can both enter
and leave the subset S∗(m). Once two trajectories have converged theywill have the same subset and so cannot diverge. This
stability is much like that we have observed for random start searches in unweighed regression and multivariate analysis
(Atkinson and Riani, 2007); convergence happens between half and two thirds of the way through the search (see Fig. 9).

6. Further data analysis

The analysis in Section 4 clearly shows the presence of heteroskedasticity in the data. To emphasize the importance of
the heteroskedastic analysis of such data we reanalyze the data with a homoskedastic model. The resulting plot of fitted
values, prediction intervals and outliers is shown in Fig. 10. This analysis finds 196 outliers. As the plot shows, these come
by trimming away the larger observations which lie away from the fitted line.

The contrast with the FS is informative about the structure of the data. Fig. 11 shows the effect of brushing the FS whenm
is around1000. Thedottedunits are those not included in the subset at this point. Aswell as the twooutliers, they include two
extreme lines of observations, one high, one low. Although these observations have not been declared as outliers, it would
be informative to return to the data and to identify these two sets of units according to country of origin and importer.
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Fig. 8. Forward plot of weightswi(m) in the last 50 steps of the search for 100 randomly selected observations and, in heavy lines, the last two observations
to enter the subset.

Fig. 9. Forward plot of minimumMahalanobis distances from 300 forward searches starting from randomly chosen subsets of size 2. All trajectories have
converged to the single robust search by half way through the search.

7. Robustness to heteroskedastic specification

Our procedure assumes that the skedastic model is correctly given by (1). A standard practice in econometrics is to use
the ordinary least squares estimator β̂OLS fromunweighted regression. If heteroskedasticity is present, the covariancematrix
of β̂OLS is estimated from a heteroskedasticity consistent sandwich estimator suggested by White (1980). We first compare
the efficiency of our procedure with that of the heteroskedasticity-consistent estimate of the efficiency of OLS which avoids
precise specification of the relationship. Because the relationship does not have to be specified, this procedure is often
described as robust. We then evaluate efficiencies when the skedastic relationship is mis-specified and White’s procedure
should indicate that OLS has relatively improved properties.

In the presence of heteroskedasticity β̂OLS is unbiased, but has an inflated variance. With Σ the variance–covariance
matrix of the observations,

var(β̂OLS) = (XTX)−1XTΣX(XTX)−1.

To estimate this matrix for independent observations, White takes σ 2
i = e2i , where the ei are the residuals from OLS. LetΣW = diag e2i , thenvar(β̂OLS) = (XTX)−1XT ΣWX(XTX)−1. (5)
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Fig. 10. 99% prediction intervals for a new observation and 196 outliers when a homoskedastic analysis is erroneously employed.

Fig. 11. Brushing the FS; +, units in the subset whenm is about 1000.

The efficiency of the estimators is compared through the estimated generalized variance of the estimate of β . We confine
our comparisons to Harvey’s model (2) from fitting which we obtain weights wH

i = 1/σ̂ 2
i , giving a weight matrix WH . The

generalized variance is proportional to the determinant of the covariance matrix. In comparing OLS and Harvey’s model as
estimators of β , the efficiency is thus

1/{|(XTX)−1XT ΣWX(XTX)−1
| × |XT WHX |}

1/p, (6)

since the covariance matrix from Harvey’s model is (XT WHX)−1. In (6) the dimension of β is p. Raising the product of
determinants to the power 1/p gives an efficiencymeasure that is proportional to the number of observations. An efficiency
of 50% indicates that twice as many observations are needed with the inefficient estimator as with the efficient estimator
to get the same amount of information about the values of the parameters β .

If the skedastic equation is correctly specified, OLSwill lose efficiency. Our purpose is to present some quantitative values
for this decline. But also, and more importantly, we investigate the efficiency of OLS usingWhite’s procedure when the data
do not come from the parametric model we fitted.

ThroughoutweuseHarvey’smodel (the results for ourmore generalmodel are very similar and are not given here for lack
of space) with a constant and three explanatory variables so that p = 4. The linear model generating the data is simulated
with three non-negative independent variables distributed as |N (0, 1)|, kept constant for the 2000 simulations for each
sample size. These are also the variables in the skedastic equation, so that σ 2

i = exp γ T xi. We compare several values for the
γj, with the all three values the same in each case. In the simulations the values of the coefficient β for the linear model are
irrelevant, although in our simulations they were set equal to three. The additive errors ϵi come from the standard normal
distribution.
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Fig. 12. Relative efficiency of OLS and Harvey’s model (6) for estimation of parameters β as heteroskedasticity increases. The data are generated from
Harvey’s model. 2000 observations, smoothed output.

Fig. 13. Relative efficiency of OLS and Harvey’s model (6) for estimation of parameters β when data are generated by some other model. Upper panels,
σ 2
i = xTγ and (xTγ )4 . Lower panels, data generated in two groups with standard deviations in the ratio 1:10. This form of Harvey’s model is fitted in the

lower-right panel. 2000 observations, smoothed output.

The left-hand panel of Fig. 12 shows the relative efficiency (6) for slight heteroskedasticity generated with γ = 0.1 for
sample sizes 200, 250, . . . , 2000. Also included on the plot are 10% and 90% simulation bands. For this slight heteroskedasticity
the ratio of σi at all xi = 2 relative to that when all xi = 0 is 1.35. As the panel shows, the efficiency of OLS is virtually steady,
with a value of 0.99 at n = 2000. For γ = 0.5 and 1.0, the ratios of standard deviations at all xi = 0 and 2 are 4.448 and 20.09.
However, with the folded normal distribution of the xi, very few observations will be this extreme in all three variables. The
centre and right panels of the plot show how the efficiency decreases for these larger values of γ . At n = 2000 the values
are 0.78 and 0.35. A further interesting feature is that, as γ increases, the plots take longer to reach a steady value. Clearly
the efficiency for γ = 1 is still decreasing at n = 2000.

We now consider what happens to the efficiency when Harvey’s model is fitted, but the data are generated by a different
heteroskedastic relationship. In the top left-hand panel of Fig. 13 the data are generated with the skedastic relationship
σ 2
i = xTγ for which OLS has an efficiency of at least 0.95. In the top right-hand panel, instead of xTγ we take (xTγ )4. Now

OLS has the much lower efficiency of 0.35 when n = 2000.
Before discussing these results, we turn to the lower panels of Fig. 13. In the left-hand panel the heteroscedasticity is

produced solely by a random half of the observations having additive errors with a standard deviation ten times that of the
remainder. For this situation OLS has an efficiency very close to one (0.997) relative to fitting Harvey’s model with the three
explanatory variables which are unrelated to the variance. Finally, the lower right-hand panel shows what happens when
one of the terms in Harvey’s model is at two-levels for the two variances, thus perfectly modelling the heteroscedasticity.
OLS then has an efficiency of 0.33.

The very surprising feature of these examples is that OLS is never more efficient than fitting Harvey’s model. Fig. 12
shows the loss of efficiency when Harvey’s model is correct. As the heteroskedasticity increases, the relative efficiency of
OLS decreases. However, in the top panels of Fig. 13 Harvey’s model, which is incorrect, is still more efficient than OLS. This
arises as the heteroskedasticity in the generated data increase with x, although not in the way specified by the fitted model.
Nevertheless, this fitted model provides a useful, and in the case of the right-hand panel, a very useful, approximation to
the heteroskedasticity. In the bottom left-hand panel, with just two variances, OLS is nomore efficient than Harvey’s model.
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But, when the two groups are correctly modelled, the efficiency of OLS falls to 0.33. Further simulations show that, when
the ratio of standard deviations is 1:50, fitting the wrong model leaves the efficiency at one, but, when the correct form of
Harvey’s model is fitted, the efficiency of OLS drops to 0.078. The overall conclusion is that, over a wide range of scenarios,
we have found that fitting a model for heteroskedasticity, even if it is incorrect, is never less efficient than OLS and usually
much more efficient.

The use of functions of residuals in weighted regression, including theweights used byWhite in (5), is discussed bymany
authors, including Carroll and Ruppert (1982), who explore slight misspecifications in the skedastic model. We however use
a fully parameterized model to provide an efficient method for very robust heteroskedastic regression.

8. Computation

All the new routines for the analysis of heteroskedastic data described in this paper have been written in MATLAB and
have been integrated inside the FSDA toolbox for MATLAB, owned jointly by the University of Parma and the Joint Research
Centre of the European Commission (Riani et al., 2012). This new software library, which extends MATLAB and its Statistics
Toolbox to support the robust and efficient analysis of complex datasets, affected by different sources of heterogeneity,
is freely downloadable from the websites http://www.riani.it/MATLAB and http://fsda.jrc.ec.europa.eu. All routines are
publicly available and do not call dll or external code.

Each file contains a set of readily executable examples which can be immediately executed. Particular attention has been
devoted to profile each segment of code in order to choose the fastest option. To run a full forward search and produce, for
example, the plot in Fig. 2 (which requires the estimation of parameters about 1100 times) takes less than 15 s using an
Intel(R) Core(TM) i7-4900MQ CPU 2.80 GHz (8 CPUs). With the same number (1100) of observations, but ten explanatory
variables, the time increases to 20 s. Increasing the number of observations to 2000, but still with 10 explanatory variables
causes an increase to 85 s. In these timings the number of variables in the regression model and in the skedastic equation
are identical.

The convention adopted inside the toolbox is to add the letter ‘‘H’’ at the end of the traditional routine for homoskedastic
data. For example, routine FSRmdr, which computes the minimum deletion residuals for homoskedastic errors, becomes
FSRHmdr for heteroskedastic errors. Similarly, routine FSR (forward search in regression) which computes the automatic
procedure for outlier detection using the rules described in Appendix A, has become FSRH. For each heteroskedastic
specification the default is to use an estimation procedure based on the scoring algorithm. However, with just a single
explanatory variable it is also possible to use a grid search algorithm. We have provided in the header of each .m file a full
description of the input and output arguments of each routine and a corresponding HTML documentation which is fully
integrated in the help system of the latest release of MATLAB, namely 2016a. All forward plots produced are brushable. That
is, use of our optional argument databrush, makes it possible to select a set of steps during the forward search and to see
the units which enter the subset in those steps highlighted in the scatter plot matrix of y against each column of X .

Finally, all datasets used in this paper and all those dealing with heteroskedastic data contained in the various editions
of the book of Greene (we cite the 5th and 7th) have been added to the repository of regression datasets contained in the
FSDA toolbox.

Appendix A. The scoring algorithm

With the skedastic equation given by (1) the loglikelihood of the n observations is L(β, σ 2, γ )

= −
1
2

n
i=1


log(2π) + log σ 2

i + (yi − xTi β)2/σ 2
i


= −

1
2

n
i=1


log{2π} + log σ 2

+ log{1 + exp(zTi γ )} + (yi − xTi β)2/

σ 2

{1 + exp(zTi γ )}


. (A.1)

Because of the block diagonal nature of the information matrix, we only require derivatives w.r.t. γ . The score vector is

S(γ ) =
∂L
∂γ

= −
1
2

n
i=1

zi


exp(zTi γ )

1 + exp(zTi γ )
−

(yi − xTi β)2

σ 2

exp(zTi γ )

{1 + exp(zTi γ )}2


=

1
2

n
i=1

zi exp(zTi γ )

1 + exp(zTi γ )


(yi − xTi β)2

σ 2{1 + exp(zTi γ )}
− 1


.

A second differentiation yields the observed information as

I(γ ) = −
∂2L

∂γ ∂γ T
=

1
2

n
i=1

zizTi


exp(zTi γ )

{1 + exp(zTi γ )}2
+

(yi − xTi β)2

σ 2{1 + exp(zTi γ )}3
exp(zTi γ ){exp(zTi γ ) − 1}


.

http://www.riani.it/MATLAB
http://fsda.jrc.ec.europa.eu
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To obtain the expected information we find E(yi − xTi β)2 which yields

I(γ ) = E{I(γ )} =
1
2

n
i=1

zizTi


exp(zTi γ )

{1 + exp(zTi γ )}2
+

exp(zTi γ ){exp(zTi γ ) − 1}
{1 + exp(zTi γ )}2



=
1
2

n
i=1

zizTi


exp(zTi γ )

1 + exp(zTi γ )

2

=
1
2

n
i=1

zizTi


1

1 + exp(−zTi γ )

2

.

For the scoring algorithm, it is convenient to write

qi =


exp(zTi γ )

{1 + exp(zTi γ )}

2

and Q = diag{qi}.

The parameter estimate at iteration k + 1 follows from that at iteration k by using the Fisher scoring algorithm

γk+1 = γk + δI(γk)
−1S(γk)

= γk + δ(ZTQkZ)−1
n

i=1

zi exp(zTi γk)

1 + exp(zTi γk)


(yi − xTi βk)

2

σ 2
k {1 + exp(zTi γk)}

− 1


, (A.2)

since the 2 and 1/2 cancel. Here δ(< 1) is a step-length parameter, intended to avoid divergence of the algorithm.
It is clear from (A.2) that the updated value of γ̂ is computed by adding the vector of estimated coefficients in the least

squares regression of (yi−xTi βk)
2/[σ 2

k {1+exp(zTi γk)}]−1 on zWi = zi exp(zTi γk)/{1+exp(zTi γk)}. Convergence occurswhen
the derivative is zero. Given γk+1, the parameters β and σ 2 are re-estimated by weighted least squares and the algorithm
continues until sufficient accuracy is obtained. In our computations we stop when

∥dk+1 − dk∥2/∥dk∥2 < 10−8,

where dk = (βT
k γ T

k )T . The remaining detail is to determine the starting values for the iteration. In the absence of prior
information the simplest procedure is to useOLS forβ and to takeγ as the coefficients from the regression ofne2i /

n
i=1 e

2
i −1

on zi, where ei is the raw residual from OLS regression.

Appendix B. Detection of a signal in the FS for regression

The envelopes in plots such as Fig. 2 give the pointwise distribution of the absoluteminimumdeletion residuals |rimin(m)|
defined in Section 3. The following rules provide for the detection of a signal, indicating the presence of one ormore outliers,
for a test with an approximate samplewise size of 1%.

There are four conditions, the fulfilment of any one of which leads to the detection of a signal.

• In the central part of the search we require 3 consecutive values of |rimin(m)| above the 99.99% envelope or 1 above
99.999%;

• In the final part of the search we need two consecutive values of |rimin(m)| above 99.9% and 1 above 99%;
• |rimin(n − 2)| > 99.9% envelope;
• |rimin(n − 1)| > 99% envelope. In this case a single outlier is detected and the procedure terminates.

The final part of the search is defined asm ≥ n−

13 (n/200)0.5


, where here [ ] stands for a rounded integer. For n = 1100

the value is slightly less than 3% of the observations.
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