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Abstract Diagnostic tools must rely on robust high-breakdown methodologies to
avoid distortion in the presence of contamination by outliers. However, a disadvantage
of having a single, even if robust, summary of the data is that important choices
concerning parameters of the robust method, such as breakdown point, have to be
made prior to the analysis. The effect of such choices may be difficult to evaluate.
We argue that an effective solution is to look at several pictures, and possibly to a
whole movie, of the available data. This can be achieved by monitoring, over a range
of parameter values, the results computed through the robust methodology of choice.
We show the information gain that monitoring provides in the study of complex data
structures through the analysis ofmultivariate datasets using different high-breakdown
techniques. Our findings support the claim that the principle of monitoring is very
flexible and that it can lead to robust estimators that are as efficient as possible. We
also address through simulation some of the tricky inferential issues that arise from
monitoring.
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1 Introduction

Assessing the effect of each individual observation on the result of a statistical analysis
should be an essential ingredient of any applied statistical work. This goal is typically
out of reach for classical diagnostic techniques, either from amodel-based or a geomet-
ric perspective, since they can be grossly distorted in the presence of contamination by
outliers, or under systematic deviation from the postulated data generating mechanism
(Maronna et al. 2006; Huber and Ronchetti 2009; Avella-Medina and Ronchetti 2015;
Farcomeni and Greco 2015). As a consequence, frequent examples can be found that
use numerical and graphical inspection of robust residuals in regression and of robust
Mahalanobis distances with multivariate data; see, e.g., Hubert et al. (2008) for an
overview. Cerioli et al. (2009), Cerioli (2010) and Salini et al. (2016) show how to cali-
brate the robust diagnostics in order to obtain valid inferential conclusions in the case of
small andmoderate sample sizes,when asymptotic results are not reliable, thus enhanc-
ing their practical usefulness. Modern developments include the bagdistance map of
Hubert et al. (2015) for the identification ofmultivariate functional outliers, regularized
versions of the robust diagnostics to be usedwhen the number of variables is large with
respect to the sample size (Alfons et al. 2013; Boudt et al. 2017; Atkinson et al. 2017a)
and extensions to non-normal models (Agostinelli et al. 2014; Amiguet et al. 2017).

However, the use of diagnostic tools derived from robust methods may not be
entirely satisfactory. These tools, like those from the classical approach, typically
end up with a single picture of the data, even if it may be uncorrupted. A persistent
disadvantage of having a single summary is that several important choices have to be
made prior to the analysis and their effect on the results is then difficult to evaluate.
Among these choices, one crucial aspect is the selection of the precise value of the
breakdown point, i.e. the fraction of contamination that the robust method is expected
to tolerate, with large values (close to 50%) leading to high robustness, but also to low
statistical efficiency. Other important features that can potentially affect the outcome
include the selection of a specific robust technique among several well-established
alternatives, and—as an extra level of complexity—further specific choices within the
selected method, such as the downweighting function in soft trimming methods like
S-estimation. In addition, each method requires a series of tuning constants for the
numerical procedure (such as the number of subsets to extract, the number of refining
steps, the number of best solutions to bring to full convergence, etc.) which have to be
decided.

Some of the shortcomings described above can be overcome if we look at sev-
eral pictures, and possibly to a whole movie, of the available data. We obtain this by
monitoring the results computed from the selected estimator, by repeating the estima-
tion process for different choices of the tuning parameters. We find that the simplest
and most informative “data movies” are those achieved by varying the breakdown
point, or the efficiency, of the estimator and we extensively explore this possibility in
subsequent sections.
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We became acquainted with the idea of monitoring more than twenty years ago
through the forward search and, until recently, our monitoring experience has been
limited to the development of this approach in a variety of contexts; see, e.g., Cerioli
and Riani (1999); Atkinson and Riani (2000); Riani and Atkinson (2001); Atkinson
et al. (2004); Riani et al. (2009); Atkinson et al. (2010); Riani et al. (2014c, 2015).
However, it is now clear to us that the potential for monitoring is much wider, as
the underlying idea can be extended to many other techniques. Riani et al. (2014a)
and Cerioli et al. (2016) consider the case of robust estimation in regression, while in
this work we focus on multivariate problems. A related multivariate methodology is
the generalized radius process of García-Escudero and Gordaliza (2005), which uses
ellipsoids of decreasing radius to define increasing levels of trimming. However, all
these radii are computed from the same robust estimate and thus do not share the
adaptive, i.e. data-driven, choice of the breakdown point of our monitoring approach.
Adaptive trimming has also been advocated by Clarke and Schubert (2006), but not in
connection with monitoring. Furthermore, Dotto et al. (2017) have recently proposed
a data-driven approach to fix an appropriate trimming level in a clustering framework.
An important bonus of monitoring, in our opinion, is that it conveys the idea of a
(visual or numerical) comparison between the subsequent estimates and the related
diagnostic measures. This paper is intended to show that such a comparison can have
beneficial consequences in most practical implementations of the methodology, thus
providing a positive step toward the hoped-for assessment of the effect of each indi-
vidual observation.

Our primary goal is to support the “philosophy” of monitoring by showing the
information gain that it provides in the analysis of complex data structures. This goal
is reached by first reviewing, in a monitoring framework, some key ideas related to
the forward search. The information provided by monitoring is there enhanced by the
graphical tools for brushing and linking plots that are included in the FSDA Matlab
toolbox (http://www.riani.it/MATLAB). Then, we extend the idea of monitoring to
two popular classes of robust multivariate estimators. With all these techniques our
approach is shown in action in four examples, for which the data can be found at the
web site http://www.riani.it/smap17/, together with a Matlab file that allows the user
to reproduce all the figures given in the paper. Although we are mainly oriented to the
development of effective diagnostic tools to be used in real-world applications of robust
statistical methods, we also address through simulation some of the tricky inferential
issues that arise as a consequence of monitoring. Indeed, we see the development
of a unified inferential framework for our monitored estimators, along the lines of
Cerioli et al. (2014) and of Johansen and Nielsen (2016a, b), to be a challenging and
compelling research goal for the future.

2 The forward search

2.1 Key ideas and Mahalanobis distances

The forward search (FS) provides an automatic form of monitoring. In this approach
we start by fitting a small and supposedly homogenous subset of observations, often
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chosen through some robust criterion. The fitting subset is then repeatedly augmented
in such a way that outliers and other influential observations enter toward the end of
the algorithm. Even more importantly, their inclusion is typically signaled by a sharp
increase in suitably selected diagnostic measures. It is thus very natural to monitor the
values of such measures as the search progresses from the small starting subset to the
final fit that corresponds to the classical statistical summary of the data.

The method of Riani et al. (2009) provides outlier tests for the FS with specified
simultaneous size and good power when the sample comes from a single multivari-
ate normal population, potentially contaminated by outliers. Atkinson et al. (2017b)
exemplify this method and also illustrate its extension to the clustering of multivariate
data. In the latter instance additional problems arise, such as the requirement of several
random starting points and the use of trimming levels much larger than the usual bound
of 0.5 (Cerioli et al. 2017). Therefore, we do not here address the problem of clustering
in detail, but keep the basic assumption of a single multivariate normal population for
the uncontaminated part of the data. Nevertheless, as the examples in Sects. 5–7 show,
multi-population problems can still be solved through our outlier detection approach,
provided that at least half of the observations come from the same population.

The search for a single population starts from a subset of m0 observations, say
S∗(m0), robustly chosen. The size of the fitting subset is increased fromm tom+1 by
forming the new subset S∗(m + 1) from those observations in the whole sample with
the m + 1 smallest squared Mahalanobis distances when the parameters are estimated
from S∗(m). Thus, some observations in S∗(m) may not be included in S∗(m + 1).
For each m (m0 ≤ m ≤ n − 1), the test for the presence of outliers is based on the
observation outside the subset with the smallest squared Mahalanobis distance.

The parameters μ and Σ of the v-dimensional multivariate normal distribution
of y are estimated in the FS by the standard unbiased estimators from a subset of m
observations, providing estimates μ̂(m) and Σ̂(m). Using these estimates we calculate
n squared Mahalanobis distances

d2i (m) = {yi − μ̂(m)}′Σ̂−1(m){yi − μ̂(m)}, i = 1, . . . , n. (1)

To detect outliers we use the minimum Mahalanobis distance amongst observations
not in the subset

dmin(m) = min di (m) i /∈ S∗(m). (2)

Testing for outliers requires a reference distribution for d2i (m) in (1) and hence for
dmin(m) in (2). When Σ is estimated from all n observations, the squared statistics
have a scaled beta distribution. However, the estimate Σ̂(m) in the search uses the
central m out of n observations, so that the variability is underestimated. Results of
Tallis (1963) on truncated distributions provide a scaling factor

c(m, n) = n

m
Cv+2{χ2

v,m/n}, (3)

where Cr (y) is the c.d.f. of the χ2 distribution on r degrees of freedom evaluated at y
and χ2

r,ζ = C−1
r (ζ ), for 0 < ζ < 1, is the ζ th quantile of the same distribution. Then

the scaled and asymptotically unbiased estimate of Σ is
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Σ̂ SC(m) = 1

c(m, n)
Σ̂(m).

The scaled minimum Mahalanobis distance dSC

min(m) follows from (2) when Σ̂(m) in
(1) is replaced by Σ̂ SC(m). In Eqs. (4) and (5) below, we show how the consistency
factor c(m, n) is taken into account in order to obtain distributional results for the
unscaled minumum Mahalanobis distance dmin(m), which is the standard diagnostic
tool in the FS.

2.2 Monitoring plots, envelopes and multiple testing for outlier detection

Atkinson et al. (2004, pp. 43–44) give results on the distribution of deletion Maha-
lanobis distances from a sample of size n. These results yield that the required quantile
of order γ (say dγ ) of the distribution of the minimum Mahalanobis distance (2) is
given by

dγ =
√
√
√
√

v(m2 − 1)

m(m − v)c(m, n)
F−1

v,m−v

(

m + 1

m + 1 + (n − m)F−1
2(n−m),2(m+1)(1 − γ )

)

,

(4)
where Fa,b(y) is the c.d.f. of the F distribution with a and b degrees of freedom
evaluated at y, and c(m, n) is the scaling factor given in (3). Correspondingly, for
d∗ > 0,

P
[

{dmin(m)}2 ≤ d∗]

= 1 − F2(n−m),2(m+1)

⎛

⎝

⎡

⎣
1

Fv,m−v

{
m(m−v)

v(m2−1)
c(m, n)d∗

} − 1

⎤

⎦
m + 1

n − m

⎞

⎠ . (5)

As we shall see, it is extremely helpful to look at forward plots of quantities of interest
such as dmin(m) during the search and to compare themwith the envelopes from several
values of γ . Such monitoring plots, drawn for series of values of m, are exceptionally
rich in information about departures of the data from the assumed structure.

For precise outlier identification we perform a series of tests, one for eachm ≥ m0.
To allow for multiple testing, we use a rule which depends on the sample size to
determine the relationship between the envelopes calculated for the distribution of
dmin(m) and the significance of the observed values. If at some point m† in the search
the nearest observation to those already in the subset appears to be an outlier, as judged
by an appropriate envelope of the distribution of the test statistic, we call this a “signal”.
Appearance of a signal indicates that observation m†, and the remaining observations
not in the subset, may be outliers. But, we need to judge the values of the statistics
against envelopes from appropriately smaller population sizes that exclude potential
outliers. The second stage of the analysis consists of superimposing envelopes for
a series of smaller sample sizes n†, starting from m† − 1 onwards, until the first
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introduction of an observation recognised as an outlier. The details of the procedure
are described in Riani et al. (2009).

In this paperwe also look atmonitoring plots of all n squaredMahalanobis distances
as m increases. As we show, these plots can be combined with brushing to relate
Mahalanobis distances to data points exhibited in scatterplot matrices, thus making a
closer connection between statistical results and individual observations.

2.3 Regression

The structure of the FS for regression is similar to that for multivariate data. Although
we are not here concerned with regression, there are some computational advances
in regression which are incorporated in our paper. Instead of scaled Mahalanobis dis-
tances, the test statistic for outlyingness in regression is the deletion residual (Atkinson
and Riani 2000, Chapter 2) with the estimate of the error variance σ 2 scaled by a con-
sistency factor similar to (3), but for a sample of univariate normal observations. Now
the distribution of the test statistic is Student’s t (Riani and Atkinson 2007), to give the
analogue of (5). Allowing for these changes, the procedure for outlier detection again
involves a signal and resuperimposition of envelopes (see, e.g., Riani et al. 2014c).

3 Other robust methods for multivariate data

The FS is one of several methods for detecting outliers in multivariate data. We com-
pare our analyses with results from monitoring high-breakdown techniques in which
extreme observations are either downweighted by a function ρ or trimmed. Extended
discussion of these methods is given in Maronna et al. (2006). We again use brushing
and linking, in conjunction with monitoring, to highlight the effect of each individual
observation on inference.

3.1 S-estimation

In estimation of Mahalanobis distances, as in (1), the estimate of the mean μ does not
depend on the estimate of Σ . However, this is not the case in such a robust method
as S-estimation. This is derived from M-estimation (see Huber and Ronchetti 2009),
in which the downweighting function ρ is used with the variance assumed known. To
make possible an estimate of scale, the covariance matrixΣ is rewritten asΣ = σ 2Γ ,
with |Γ | = 1. For given σ 2, the estimates of μ and Γ minimize the objective function

n
∑

i=1

ρ
{

d2i (μ, Γ )/σ 2
}

, (6)

where ρ is a function that reduces the importance of observations with large Maha-
lanobis distances. The robust estimate of the squared scale, say σ̃ 2, is found by solution
of the equation
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1

n

n
∑

i=1

ρ

(

d2i (μ, Γ )

σ 2

)

= K , (7)

where 0 < K < sup ρ. Taking the minimum value of σ̃ 2 which satisfies equation (7)
yields the S-estimate of squared scale (σ̃ 2

S ) and the associated estimates of μ and Γ

(μ̃S and Σ̃S).
Some properties of the class of functions ρ are important for the robustness of the

estimator. Specifically, we focus on the replacement version of the breakdown point,
which is defined as the smallest fraction of outliers that can take the estimate over all
bounds; see, e.g., Rousseeuw and Leroy (1987, §2) and Farcomeni and Greco (2015,
p. 10). Rousseeuw and Leroy (1987, p. 139) show that if ρ satisfies the following
conditions:

1. It is symmetric and continuously differentiable, and ρ(0) = 0;
2. There exists a c > 0 such that ρ is strictly increasing on [0, c] and constant on

[c,∞);
3. It is such that

K/ρ(c) = bdp,with 0 < bdp ≤ 0.5, (8)

the breakdown point of the S-estimator tends to bdp when n → ∞. As c increases,
fewer observations are downweighted, so that the estimate of σ 2 approaches that for
maximum likelihood estimation and bdp → 0. For consistency when the errors are
normally distributed, we require

K = EΦ0,1

[

ρ

(

d2i
σ̃ 2

)]

, (9)

where Φ0,1 is the c.d.f. of the standard normal distribution. It is also possible to
rescale ρ (see, e.g., Maronna et al. 2006, p. 31). If ρ(x) is normalized in such a way
that ρ(c) = 1, the constant K gives the asymptotic value of the breakdown point of
the S-estimator. If we fix bdp it follows from (8) and (9) that c and K are determined.
The exact relationship will depend upon the function ρ, but Riani et al. (2014b, §3.1)
show how to obtain computationally efficient calculations for finding the value of c
once the value of bdp is specified. Although the ρ functions in (6) and (7) may be
different, in our calculations we use the same ρ for both equations and, specifically,
we take ρ as Tukey’s biweight.

3.2 MM-estimation

The results of Riani et al. (2014b) show an asymptotic relationship between the break-
down point and efficiency of S-estimators; as one increases, the other decreases. In
an attempt to break out of this relationship, Yohai (1987) introduced MM-estimation,
which can be seen as a two-step extension of S-estimation. In the first stage the break-
down point of the scale estimate is set at 0.5, thus ensuring high robustness. This fixed
estimate is then used to obtain new estimates of μ and Γ , for which K can be chosen
to provide high efficiency.We start the empirical analyses that follow by taking a value
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of 0.99 for this efficiency. However, we of course look over a range of values when
we monitor MM-estimates. In this paper we always refer to location efficiency, but
our ideas could also be applied to scale efficiency.

It is worth noting that at present there is not a universal recipe for which level of
efficiency must be used. Maronna et al. (2006, §5.9) recommend an efficiency of 0.85
as a generally safe choice in regression problems, even if MM-estimators are often
advocated with an efficiency of 0.95 or 0.99. The aim of our approach is to reach a
data-driven balance between robustness and efficiency in MM-estimation. Automatic
computation of this balance clearly enhances the practical advantages of estimation
using several trial values, as envisaged by Maronna et al. (2006, p. 144).

3.3 Methods using hard trimmed estimates of the covariance matrix

The contours of constant squared Mahalanobis distances form ellipsoids in v-
dimensional space. This simple geometric interpretation suggests two further esti-
mators of μ and Σ found by “hard” trimming. That is, the number of observations h
to be used in fitting is decided before the data are analysed, although, of course, which
n − h observations are to be trimmed is a matter of calculation. The estimators that
we consider are the minimum volume ellipsoid (MVE) and the minimum covariance
determinant (MCD) (Rousseeuw and Leroy 1987). In both methods the value of h
is often taken as just greater than n/2 (see formula (10) below, with bdp = 0.5),
yielding the highest possible finite-sample value of the breakdown point for an affine
equivariant estimator (Davies 1987; Lopuhaä and Rousseeuw 1991). Larger values of
h give more efficient estimates of the parameters but with lower breakdown point.

In accordance with our established approach we use monitoring to provide an
adaptive estimate of the highest value of h which provides a robust fit; see Farcomeni
and Greco (2015, §2.5 and §3.7) and Boudt et al. (2017, §5) for recent applications
in the same direction, also envisaged by Croux and Haesbroeck (1999, p. 170). The
MVE has the undesirable property that its consistency rate is only n−1/3 and we see
the effects of the resulting instability in monitoring plots such as Fig. 15. Finally, we
also include in our comparisons the more efficient reweighted MCD estimate that is
computed on a second subset of h∗ > h observations for which the squared robust
distances computed from the raw MCD estimate are below a fixed threshold, often
taken from the χ2

v distribution.
In all instances of hard trimmed estimates of the covariance matrix a scaling factor

similar to (3) must be used to ensure consistency in the absence of contamination.
However, for simplicity we omit explicit reference to this scaling in the examples that
follow.

4 Summary of empirical analysis

We use four examples to explore the properties and advantages of monitoring robust
analyses. The first data example, in Sect. 5, is of 272 observations on successive
eruptions of the ‘Old Faithful’ geyser in Yellowstone National Park, Wyoming. This
example shows that monitoring MM analyses provides useful information, but that
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interpretation of the analysiswith S-estimation is less straightforward.We accordingly,
in Sect. 6, look at two simulated data sets, the first with comparatively few outliers, all
remote, to help understand conditions underwhichmonitoring is helpful in establishing
the value of bdp for S-estimation. The second simulated example, in Sect. 6.2, has a
higher proportion of outliers, none of which are particularly remote. This provides a
very different assessment of the various methods of robust analysis, although useful
information is still gathered by monitoring. This second simulated example has a
structure related to that of our second data example in Sect. 7 which contains 488 four
dimensional observations on cows with bovine dermatitis.

5 A first data example: eruptions of old faithful

The data are taken from the MASS library (Venables and Ripley 2002). There are 272
observations with y1i the duration of the i th eruption and y2i the waiting time to the
start of that eruption from the start of eruption i −1. There are several similar data sets
in the literature and we may thus take this example as a specimen for a much wider
class of statistical applications. The related literature and the physics of the problem
are discussed by Azzalini and Bowman (1990) who employ a time series analysis.
Here we use multivariate analysis of the two-dimensional observations, so ignoring
any time series structure. We assume that the bulk of the data come from a single
bivariate (normal) population, for which we robustly estimate μ and Σ .

Figure 1 shows results from the analysis using S-estimation with (asymptotic)
breakdown point of 50% and Tukey’s biweight function. The left-hand panel shows
that the estimator has found 82 outliers when these are identified at a pointwise level
of 99%. The right-hand panel of the figure shows that two groups have been found.
The larger group, taken as the main population, with higher values of the two variables
is in general well separated from the smaller group of outliers. If this were a clustering
problem itmight be argued that a few of the observations between the two groups could
be assigned to the smaller group and this argument could be explored using clustering
methods. However, the very robust S analysis has revealed the salient features of the
data.

In our initial MM implementation we have used an efficiency of 99%. The resulting
analysis shows no outliers at all. We now use monitoring to determine, for example,
whether the choice of 99% efficiency is too optimistic.

To monitor the parameters of the procedures, bdp for S-estimation and efficiency
for MM, we see how plots of the squared Mahalanobis distances for all n observations
varywith the parameters. The left-hand panel of Fig. 2 shows a zoom of themonitoring
plot for S-estimation. As we have already seen, for a bdp of 50% a robust analysis is
obtained. However, the plot shows that, even for a bdp of 0.49, the analysis becomes
non-robust. In order to emphasize the behaviour at the beginning of our monitoring
we have zoomed the full plot which runs from 0.5 to 0.01. Over the range 0.49–0.01
the plot remains the same as it is for the greatest part of the left-hand panel of Fig. 2.
Only for a bdp of 0.5 is a robust analysis obtained, which provides parameter estimates
with poor efficiency.
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Fig. 1 Eruptions of Old Faithful, S-estimation with a bdp of 50%. Left-hand panel, index plot of squared
Mahalanobis distanceswith thresholdχ2

2,0.99; 82 outliers are identified. Right-hand panel, scatterplotmatrix
showing the identified outliers plotted as (red) circles (colour figure online)
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Fig. 2 Eruptions of Old Faithful. Left-hand panel, squared Mahalanobis distances from monitoring S-
estimation—note the small range of bdp. Right-hand panel, monitoring correlation between consecutive
distances

In all our plots monitoring Mahalanobis distances we use a colour map which goes
from light blue (light grey in the black and white version) to dark blue (dark grey).
The colour becomes darker as the maxima of the individual trajectories increase.
Consequently, the eye is drawn to the behaviour of the most outlying units.

For simple structures, as here, there is a clear division of the solutions into a robust
fit and a non-robust one, with a sharp break between them. For more complicated
examples the point of transition is not so clearly visible. But in all cases we find
that the structure of the plot is well summarized by the correlation of the squared
Mahalanobis distances, or their ranks, at adjacent monitoring values. The right-hand
panel of Fig. 2 shows the monitoring plot of three standard measures of correlation:

1. Spearman. Correlation between the ranks of the two sets of observations.
2. Kendall. Concordance of the pairs of ranks.
3. Pearson. Product-moment correlation coefficient.
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Fig. 3 Eruptions of Old Faithful. Left-hand panel, squared Mahalanobis distances from monitoring MM-
estimation. Right-hand panel, monitoring correlation between consecutive distances

All three panels clearly indicate the failure of the robust procedure even for a bdp of
0.49.

Figure 3 is, on the other hand, a fine example of the power of monitoring. The left-
hand panel shows the Mahalanobis distances for a series of robust MM fits. These are
stable until an efficiency of 0.71, when the fit changes abruptly to one corresponding to
the maximum likelihood estimate which remains stable as the efficiency increases to
one. The right-hand panel shows themonitoring plots of the three correlationmeasures,
all of which very sharply confirm 0.71 as the highest possible efficiency.

To extract further information from this plot, we show in Fig. 4 the effect of brushing
the more extreme squared Mahalanobis distances in the stable left-hand part of the
monitoring plot. The right-hand panel gives the scatterplot matrix for the units in
the brush and those outside. The brushed units indeed correspond to the outliers. In
comparison with the scatterplot matrix from S-estimation in Fig. 1, slightly more
outliers are indicated (97 instead of 82) and the two groups are more similar in shape.
All of this is of course a detail. What we have shown is how to find a robust MM-
estimate with an adaptively established efficiency which is the greatest possible for
these data. The choice of the greatest possible efficiency yields a clearer separation
between the “main population” and the “outliers” than the robust but inefficient S fit
with bdp = 0.5.

In both monitoring plots of the squared Mahalanobis distances we have included
a horizontal (red) line corresponding to χ2

2,0.99. In the left-hand part of the left-hand
panels of the figures this indicates many outliers. It is however a pointwise bound and
its properties are not obvious (they are investigated by simulation in Sect. 8). It is
interesting that in the right-hand part of both plots, where we have a non-robust fit,
three outliers are indicated, in excellent agrement with the 1% band for outliers and a
sample size of 272.

We now turn to hard trimmingmethods. The left-hand panel of Fig. 5 is an index plot
of the squaredMahalanobis distances from the rawMCDwith (asymptotic) breakdown
point of 50%; 97 outliers are found. The right-hand panel shows the 93 outliers found
after reweighting using (0,1) weights determined by comparison with χ2

2,0.99. More
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Fig. 4 Eruptions ofOld Faithful. Left-hand panel, brushing themonitoring plot forMM-estimation (Fig. 3).
Right-hand panel, scatterplot matrix of the units with the 97 most extreme squared Mahalanobis distances
shown as filled red circles (colour figure online)
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Fig. 5 Eruptions of Old Faithful, MCD analysis. Left-hand panel, index plot of squared Mahalanobis
distances from raw MCD with 50% bdp; 97 outliers lie above the 99% band from χ2

2 . Right-hand panel,
reweighted MCD; now 93 outliers are identified

accurate thresholds could be adopted for precise outlier identification (see Hardin and
Rocke 2005; Cerioli 2010; Cerioli and Farcomeni 2011; Farcomeni and Greco 2015,
§2), but we keep the simple (asymptotic) χ2

2 approximation not to distract from the
main goal of our work, which is the study of monitoring. We again refer to Sect. 8
for discussion of this issue. The scatterplot of the division into two groups for the
raw MCD is identical to that for the brushed MM-estimator. However, the parameter
estimates from raw MCD have a higher variance than those from MM-estimation.

In this example, the trimmed estimators can both be improved through monitoring.
The left-hand panel of Fig. 6 shows the monitoring of the squared Mahalanobis dis-
tances for the MCD. As in the previous plots for S-estimation, the asymptotic value
of the breakdown point (bdp) is reported on the horizontal axis. For each bdp ≤ 0.5
the estimates are computed using a subset of

h = 	(1 − bdp)(n + v + 1)
 (10)
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Fig. 6 Eruptions of Old Faithful. Left-hand panel, squared Mahalanobis distances from monitoring raw
MCD estimation. Right-hand panel, monitoring the reweighted MCD (reweighting threshold χ2

2,0.99)

observations, where 	 
 denotes the floor function. The squared robust distances ini-
tially decrease steadily, while highlighting the same set of units. Then, at a bdp around
0.29 there is an abrupt change to a fit displaying two or three large distances which
remains sensibly constant until the MLE is reached at bdp = 0.

A similar plot for the reweighted MCD is displayed in the right-hand panel of the
figure. This is much more stable than that for the crude MCD until 0.37, at which
bdp there is a collapse to the MLE. The right-hand parts of both panels are similar.
However, the left-hand panel shows the distances for the crude MCD decreasing as
successive observations are added to the subset used in fitting. On the other hand,
the reweighted MCD shows three regions during which the distances are constant. In
these regions the effect of changing the bdp in the (raw) first stage does not cause any
change in the units chosen by the reweighting procedure.

Our monitoring approach also helps to appreciate the effect of the threshold used in
the reweighting step. Figure 7 repeatsmonitoring of the squaredMahalanobis distances
from the reweighted MCD when weights are determined by χ2

2,0.95 (left) and χ2
2,0.999

(right). Although the message conveyed by the two plots is broadly the same, the less
efficient 95% threshold produces a few more outliers and a neater separation between
the two populations, while increasing efficiency in the reweighting step causes the
inclusion of some contaminated units at a slightly larger bdp than 0.37. We reach the
same conclusions by looking at Fig. 8,which shows the 0.99 tolerance ellipses obtained
through the two alternative reweighted estimates with bdp = 0.5. It is apparent that
the less biased estimate of Σ computed on the main population of the left-hand panel
is based on a smaller number of observations and correspondingly has lower statistical
efficiency. We thus argue that monitoring can also help to select this additional tuning
parameter, leading to the best data-specific balance between robustness and efficiency
for the reweighted estimator.

The latter claim suggests the possibility of monitoring the robust Mahalanobis
distances as a function of the reweighting probability itself, for a given value of bdp,
inmuch the sameway as we have seen forMM-estimation. Such amonitoring plot, not
reported here, is fairly stable but indeed shows that the squared robust distances tend
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Fig. 7 Eruptions of Old Faithful. Squared Mahalanobis distances from reweighted MCD. Left-hand panel,
reweighting threshold χ2

2,0.95. Right-hand panel, reweighting threshold χ2
2,0.999
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Fig. 8 Eruptions of Old Faithful. 0.99 tolerance ellipse for reweighted MCD based on χ2
2,0.95 (left-hand

panel) and on χ2
2,0.999 (right-hand panel), with bdp = 0.5

to be smaller when the reweighting probability increases, as implied by the ellipses
in Fig. 8. Further evidence of this behaviour is provided in the simulation study of
Sect. 8.

We now turn to the totally adaptive and parameter free analysis from the FS. The
left panel of Fig. 9 shows the forward plot of dmin(m). A signal is found at m = 160
and superimposition leads to the identification of 95 outliers. The scatterplot matrix,
not shown, is virtually identical to that for monitored MM-estimation in Fig. 4. The
shape of this trajectory is typical of that obtained from data with two clusters. The
peak arises because the next unit to enter the search is remote from those in the cluster
providing the subset of the search. After several units from the other cluster have
entered this subset, the parameter estimates change and units in the second cluster no
longer appear remote.

These ideas are cogently illustrated by the forward plot of squared Mahalanobis
distances in the right-hand panel of Fig. 9. In the central part of the search, almost
for m in the whole range 50–200, the two clusters are apparent. The lower set of
distances are from the observations forming the first cluster. There is then a gap in the
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Fig. 9 Eruptions of Old Faithful; analyses with the FS. Left-hand panel, forward plot of minimum Maha-
lanobis distance illustrating outlier detection. Right-hand panel, forward plot of scaled squaredMahalanobis
distances showing evidence of a cluster of outliers

plot, because observations in the second cluster are clearly separated from those in
the first cluster. Although we found a signal at m = 160 the final number of members
in the first group was found by resuperimposition to be 177. The figure shows that
intense masking only occurs a little later, around m = 201. There are three relatively
large Mahalanobis distances at the end of the search, which are from observations
lying between the two groups. However, the present paper is about monitoring, not
clustering. A fuller discussion of the clustering of these data is given by Atkinson and
Riani (2007) and Cerioli et al. (2017).

6 Two examples with simulated data sets

6.1 Lightly contaminated data

In our first simulated example there are 200 five-dimensional observations, all simu-
lated with standard normal co-ordinates. Thirty of the observations had a displacement
of 2.4 added to each co-ordinate. As a result the outliers are grouped, with virtually
no overlap with the central 170 observations.

Figure 10 shows the result of S-estimation using Tukey’s biweight with a bdp of
0.5; 30 observations (all the contaminated units excluding unit 18 and plus unit 42)
are declared as outliers when χ2

5,0.99 is used to perform the test. The right-hand panel
of the figure shows the group of outliers found, virtually all of which have higher
values of all co-ordinates than the observations not declared as outlying. A question to
be answered by monitoring is whether the same structure can be revealed by a lower
value of bdp, leading to estimates ofμ andΣ with higher efficiency that do not require
preliminary outlier removal.

Figure 11 shows the result of MM-estimation with an efficiency of 99%. This
method starts from the successful S-estimates in Fig. 10, but the high efficiency require-
ment has the consequence that the estimates change sufficiently so that many of the
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Fig. 10 Lightly contaminated data; S-estimation with bdp 0.5. Left-hand panel, index plot of squared
Mahalanobis distances; 30 outliers are identified by the χ2

5 band. Right-hand panel, scatterplot showing
outliers as (blue) crosses (colour figure online)
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Fig. 11 Lightly contaminated data; MM-estimation with efficiency 99%. Left-hand panel, index plot of
squared Mahalanobis distances; now only seven outliers are identified by the χ2

5 band. Right-hand panel,
scatterplot showing outliers as (red) circles and the distorted group of central observations (colour figure
online)

outliers have high weights. As the left-hand panel of the figure shows, only seven
observations are declared as outliers. The right-hand panel of the plot shows how
the clustered nature of the outliers has caused the original spherical group of “good”
observations to become ellipsoidal due to the incorporation of outliers. A series of
panels detailing this process for a similar example is given in Figure 10 of Riani et al.
(2014b).

Before turning to the monitoring of these two estimators, we look at the two hard
trimming methods. The left-hand panel of Fig. 12 shows the 31 outliers found by the
MCD and the right-hand panel shows the effect of reweighting using the χ2

5 band. In
this case the effect is slight; one wrongly declared outlier is reclassified. A similar set
of outliers is found by the MVE.

We now consider the effect of monitoring these procedures. The left-hand panel of
Fig. 13 shows the plot of robust squared Mahalanobis distances of the 200 units using
S-estimation with bdp decreasing from 0.5 to 0.01. Despite there only being 15% of
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Fig. 12 Lightly contaminated data, index plots of squared Mahalanobis distances. Left-hand panel, raw
MCD; 31 outliers are identified by the χ2

5 band. Right-hand panel, reweighted MCD; 30 outliers
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Fig. 13 Lightly contaminated data, monitoring plots of squared Mahalanobis distances. Left-hand panel,
S-estimation. Right-hand panel MM-estimation

outliers, the robust solution is only found for breakdown points of 0.46 or higher. It is
not possible to obtain an efficient robust estimate for these data using S-estimation.

The right-hand panel of Fig. 13 shows the monitoring plot for MM-estimation. It
is clear from this stable plot that the set of outliers found by the very robust versions
of S and MCD is also found here for an efficiency of up to 88%. Thus, despite the
indication of Fig. 11, MM works well here. The failure arises because the common
advice of an efficiency of 95% or 99% does not hold for these data. To confirm that
these are virtually the same outliers as those found by S and MCD estimation, Fig. 14
shows the effect of brushing the most outlying observations for efficiencies between
0.5 and 0.88. The scatterplot matrix in the right-hand panel of the plot shows the
strong similarity with the scatterplot from S estimation in Fig. 10. Through the use of
monitoring we are able to adaptively choose the highest efficiency that gives a robust
analysis. This result is an example justifying the use of monitoring.

More briefly, we show in Fig. 15 the plots of squared Mahalanobis distances from
monitoring the MCD and the MVE. The plot for the MCD is more jagged than those
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Fig. 14 Lightly contaminated data. Left-hand panel, brushing the monitoring plot for MM-estimation
(Fig. 13). Right-hand panel, scatterplot matrix of the units with the most extreme squared Mahalanobis
distances, plotted as (red) dots (colour figure online)
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Fig. 15 Lightly contaminated data, monitoring plots of squared Mahalanobis distances. Left-hand panel,
raw MCD. Right-hand panel MVE

we have seen before, but does show the change in the pattern of distances around a
bdp of 0.14. The right-hand panel of the plot shows the monitoring plot for the MVE.
This also finds the outliers for a high breakdown point but is so jagged as to be of little
diagnostic use. As we stated in Sect. 3.3, such a plot is a reflection of the poor rate of
convergence of this estimator. We now exclude the MVE from further study.

The monitoring plot for the reweighted MCD with a pointwise threshold of 0.99 is
much the same as that for the original MCD, including a dramatic change at a bdp of
0.14. We do not give it here. The FS provides a clear indication of the outliers and a
forward plot of scaled squared Mahalanobis distances which, like Fig. 9, for a large
part of the search exhibits a clear gap between central units and the outliers with large
distances. This plot is likewise not given here.

The conclusion of this example is that most of the methods work well with a light
amount of contamination well separated from the main body of the data. In general
monitoring allows us to choose values of efficiency or breakdown point that give esti-
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Fig. 16 Heavily contaminated data; analysis with the FS. Left-hand panel, forward plot of minimum
Mahalanobis distance showing the signal for the presence of outliers. Right-hand panel, scatterplot of the
116 outliers indicated by the search, plotted as red circles (colour figure online)

mators that are as efficient as possible: that is, they exclude the outliers while fitting the
“good” observations. Our monitoring has also provided important information about
S-estimation; even with this advantageous data configuration, the method does not
yield an efficient robust estimator. Equally importantly, we have shown the excellent
performance of MM-estimation, provided unrealistic requirements are not made for
efficiency.

6.2 Heavily contaminated data with appreciable overlap

Nowwe consider a simulated example which is similar to the structure we detect in our
second data example in Sect. 7. There are 400 four-dimensional standard normal ran-
domvariables, one hundred of thembeing displaced by an amount 2 in each dimension.
There is thus some overlap between the 25% of outliers and the uncontaminated data.

We start by describing the results of the FS, which conveniently also allows us to
display the structure of the data. The left-hand panel of Fig. 16 shows the monitoring
of the minimumMahalanobis distance during the search. There is a signal atm = 271.
Resuperimposition leads to the detection of 116 outliers (97 of the 116 belong to the
group of contaminated units), that is 29% of the data. The right-hand panel of the
figure shows the scatterplot with the 116 outliers plotted as (red) circles. The result of
brushing the scaled squaredMahalanobis distanceswhich are above theχ4

0.99 threshold
in the central part of the search (left-hand panel of Fig. 17) shows the spherical structure
of the uncontaminated data (right-hand panel of Fig. 17).

There ismuch less structure evident in someof the other analyses. BothS-estimation
with the highest breakdownpoint andMM-estimationwith 99%efficiency fail to detect
most of the outliers. Using χ2

4,0.99 for outlier detection, the S-estimator identifies 7
outliers and the MM-estimator 6. In these cases, monitoring does not help. The left-
hand panel of Fig. 18 shows the smooth forward plot of the squared Mahalanobis
distances from S-estimation as a function of bdp. There is slightly more structure in
the likewise smooth plot for MM-estimation in the right-hand panel of the figure, but
nothing that indicates an appreciable number of outliers.
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Fig. 17 Heavily contaminated data; analysis with the FS. Left-hand panel, forward plot of squared scaled
Mahalanobis distance after brushing the units above the χ4

0.99 threshold in the central part of the search.
Right-hand panel, scatterplot of the brushed units plotted as filled red circles (colour figure online)
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Fig. 18 Heavily contaminated data, monitoring plots of squared Mahalanobis distances. Left-hand panel,
S-estimation. Right-hand panel MM-estimation

Wenowconsider theMCD.Whenbdp is 50%, 64 outliers are found usingχ2
4,0.99 (60

belong to the group of contaminated units). These are shown in the left-hand panel of
Fig. 19. Reweighting the output of this analysis leads to the detection of only 9 outliers
(7 belong to the group of contaminated units) as is shown in the right-hand panel of the
figure.Thepanel showshow thedistributionof distances for the 100 contaminatedunits
is changed by the parameter estimates from reweighting. However, the distribution of
these distances is even so quite distinct from those from the uncontaminated units.
This effect of reweighting, which is not substantially affected by the choice of the
reweighting threshold, is quite different from that shown in Fig. 12, where weighted
and unweighted analyses were comparable. However, monitoring the MCD is still
very informative. The left-hand panel of Fig. 20 shows a striking change around a bdp
of 0.27 as the outliers start to be included in the central part of the data. The right-hand
panel of the figure shows the monitoring plot for the reweighted MCD. There is a
change around a bdp of 0.28 when some Mahalanobis distances slightly increase in
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Fig. 19 Heavily contaminated data, MCD analysis. Left-hand panel, index plot of squared Mahalanobis
distances from raw MCD with 50% bdp. Right-hand panel, reweighted MCD

00.050.10.150.20.250.30.350.40.450.5

Break down point

0

5

10

15

20

25

30

35

M
ah

al
an

ob
is

 d
is

ta
nc

es

99% band

00.050.10.150.20.250.30.350.40.450.5

Break down point

0

5

10

15

20

25
M

ah
al

an
ob

is
 d

is
ta

nc
es

99% band

Fig. 20 Heavily Contaminated Data, monitoring plots of squared Mahalanobis distances. Left-hand panel,
raw MCD, right-hand panel, reweighted MCD

magnitude. For lower values of the bdp the plots in the two panels are similar; just 9
observations are identified as outlying, those shown in the right-hand panel of Fig. 19.

Figure 21, showing index plots of the squared Mahalanobis distances computed
from the raw MCD with different values of the breakdown point, provides further
insight into our data-driven choice of bdp. The left-hand panel is obtained with bdp =
0.29, immediately before the sudden change pointed out by the monitoring plot. The
structure of the data implied by the new index plot is similar to that already given in the
left-handpanel of Fig. 19,with only a slight reduction in the number of detected outliers
(now 46, with just 1 of them belonging to the group of uncontaminated observations)
and essentially the samenumber of uncontaminated observations taken as non-outlying
(now 299 instead of 296). On the other hand, it is clear that the choice of a smaller
breakdown point, such as bdp = 0.23 (right-hand panel), does not not guarantee
against masking and provides a completely different (non-robust) fit, with only few
contaminated observations identified as outliers.

The conclusion of this potentially problematic example is that smooth downweight-
ing, as in M-estimation and its derivatives, is not enough with such a high level of
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Fig. 21 Heavily contaminated data, index plots of squared Mahalanobis distances from the rawMCDwith
different values bdp: 0.29 (left) and 0.23 (right)

Table 1 Heavily contaminated data, number of uncontaminated (nu ) and contaminated (nc) observations
in the fitting subset of the raw MCD, for different values of bdp

bdp = 0.5 bdp = 0.45 bdp = 0.35 bdp = 0.29 bdp = 0.23

nu 201 220 258 281 245

nc 1 1 3 4 63

contamination. Hard trimming, either from the FS or from theMCD, is necessary. Effi-
cient estimates are automatically computed from the adaptive choice of subset size
in the FS. Such estimates can also be obtained by monitoring the MCD which again
introduces adaptive trimming into the fitting algorithm. The advantage of selecting a
degree of robustness which is specifically tailored to the data at hand can be appre-
ciated by noting the number (nu) of uncontaminated observations that are used for
parameter estimation. Table 1 reports these numbers for the raw MCD and for dif-
ferent values of the breakdown point. The same table also gives the corresponding
numbers (nc) of contaminated observations that are included in the fitting subset. It is
seen that the maximally robust MCD estimate obtained with bdp = 0.5 is computed
on considerably fewer uncontaminated observations than the still robust estimate with
bdp = 0.29, although the values of nc are comparable in the two cases. While intro-
ducing a very modest amount of bias (three more mildly contaminated units in the
fitting subset), our data-driven choice of bdp leads to an increase in efficiency of the
order of

√
281/201 − 1 ≈ 0.18 for the estimate of μ and to an even larger gain for

the estimate of Σ (see, e.g., Croux and Haesbroeck 1999). In contrast, Table 1 shows
that the effect of masking is paramount when bdp = 0.23.

7 A second data example: cows with bovine dermatitis

We now consider our second data example, that of 488 cows with bovine dermatitis
(perhaps, more strictly, vaccine dermatitis). The disease, which causes lameness in
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Fig. 22 Cows with Bovine Dermatitis; analysis with the FS. Left-hand panel, forward plot of minimum
Mahalanobis distance showing the signal for the presence of outliers. Right-hand panel, scatterplot of the
230 outliers indicated by the FS, plotted as red circles (colour figure online)

cattle, was first discovered in Italy in 1974. It can reduce the yield of milk, but, we are
assured, the quality of the milk is not affected.

There are four measurements per cow derived from photographic images. There
is no reason to believe that they are approximately normally distributed, but we start
with the FS assuming this to be true. The left-hand panel of Fig. 22 shows the shape
in the middle of the search that is often associated with two clusters of similar size;
after a signal, here at m = 225, the trace of minimum distances returns inside the
envelopes as the observations from the second cluster cause masking. For these data,
resuperimposition of envelopes leads to the identification of 230 outliers. The right-
hand panel of Fig. 22 clearly shows the two groups that have been identified, relatively
well separated in some dimensions, such as y1 and y3, but overlapping in the other
two dimensions. The groups have plausibly normal distributions in all projections in
the scatterplot matrix.

As might be expected from the previous examples, both the S-estimator and MM
without monitoring fail to indicate any structure.

Figure 23 shows the monitoring of the Mahalanobis distances for these two esti-
mators. The left-hand panel shows the S-estimator and is essentially smooth—under
these conditions the estimator with bdp 0.5 is little different from the maximum likeli-
hood estimator. As illustrated in the right-hand panel of Fig. 23 there is slightly more
of interest in the plot for the MM-estimator, caused by the few outliers that enter as
the efficiency approaches one.

The MCD, which uses hard trimming, is more informative about the structure of
the data. The raw MCD indicates 186 outliers. Reweighting with χ2

4,0.95 and χ2
4,0.99

reduces this number respectively to 144 and 58.More insight is obtained bymonitoring
the MCD as in the left-hand panel of Fig. 24, even if this is not a particularly easy plot
to interpret. There is a first region from a bdp of 0.5–0.4. Brushing this narrow range
of values gives the set of 44 outliers shown in the scatterplot of the right-hand panel of
the figure. These have a similar structure to the outliers exhibited for the FS in Fig. 22.
Of course, with such a complex plot, the number of outliers selected will depend both
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Fig. 23 Cowswith BovineDermatitis; monitoring plots of squaredMahalanobis distances. Left-hand panel
S-estimation and, right-hand panel, MM-estimation
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Fig. 24 Cows with Bovine Dermatitis. Left-hand panel, monitoring the raw MCD. Right-hand panel,
scatterplot showing, as red dots, the 44 observations obtained by brushing large Mahalanobis distances
(colour figure online)

on the range of bdp considered and the minimum value of distance included in the
brush.

Although robust clustering methods might be preferable in this example, given
the presence of two overlapping and almost equally-sized groups, we have seen that
monitoring the value of the breakdown point of MCD does help to understand the
structure of the data. It does not, as in the other examples, lead to the specification
of the bdp for an efficient robust estimator; a reasonable separation between the two
groups can only be obtained with values of bdp close to 0.5, even if hard trimming is
used.

8 Assessing the pointwise bounds for the squared Mahalanobis distances
from monitoring

In our examples we have used thresholds for outlier detection based on the chi-squared
distribution. This is the limiting distribution to which, in the absence of contamination,
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Fig. 25 Estimated (dashed lines) and asymptotic (solid lines) quantiles of squared robust Mahalanobis
distances for samples of size n = 200 from the four-variate normal distribution, as a function of bdp.
Left-hand panel: raw MCD. Righ-hand panel: S-estimation

all the squared robust Mahalanobis distances of this paper converge as n → ∞. A
relevant issue is then to understand the quality of this distributional approximation
in monitoring plots for samples of moderate size. An additional problem, that we do
not address here but leave for future research, is the use of pointwise bounds when
performing a sequence of n outlier tests, as in the FS, with the same dataset being
scrutinized for each value of breakdown point or efficiency.

To answer our present question we simulate 1000 samples of size n = 200 from the
four-variate standard normal distribution. For each sample we repeat the monitoring
analyses described in Sects. 5–7 and compute Monte Carlo estimates of the quantiles
of the squared robust distances for

ζ ∈ {0.01 0.05 0.10 0.25 0.5 0.75 0.95 0.99}.

We start our comparison in Fig. 25, where we show the estimated quantiles and their
asymptotic χ2

4,ζ counterparts, for the raw MCD and for S-estimation, as a function
of breakdown point. With such a sample size the null asymptotic distribution already
provides a reliable approximation for maximum likelihood estimation, since χ2

4,ζ is
close to the ζ -quantile of the exact scaled beta distribution of squared Mahalanobis
distances. For instance, χ2

4,0.99 = 13.28, while the exact 0.99-quantile is 12.97. It is

evident that, as the degree of trimming inMCD increases, theχ2
4 approximation rapidly

deteriorates, leading to liberal outlier tests. Consequently, the consistency factor (3)
is not enough to accommodate even moderate levels of trimming in the right tail of
the distance distribution which we require for precise outlier identification. This result
confirms the need to adopt more accurate thresholds (Hardin and Rocke 2005; Cerioli
2010; Cerioli and Farcomeni 2011), perhaps by including further correction factors
(Pison et al. 2002; Cerioli et al. 2009), when the goal is outlier detection (which is not,
we recall, themain focus of this paper). The result also quantifies the change implied by
alternative degrees of robustness on the accuracy of asymptotic distributional results
for MCD-based squared distances, which may be relevant in several application fields
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Fig. 26 As Fig. 25, but now for reweighted MCD. Left-hand panel: reweighting based on χ2
4,0.90. Righ-

hand panel: reweighting based on χ2
4,0.99

(see, e.g., Green andMartin 2014). The quality of the χ2
4 approximation is consistently

better for the squared robust distances computed from S-estimates. This distributional
advantage with uncontaminated data must of course be contrasted with the potential
masking effects that we have seen in Sects. 5–7 when many outliers (or groups) are
present.

Figure 26 repeats the comparison for the reweighted MCD, with two alternative
thresholds for reweighting. Now the empirical quantiles are virtually constant for all
values of bdp. However, the resulting outlier test is liberal, even when bdp is close
to 0, if reweighting is based on χ2

4,0.90. This is another harmful consequence of using
inaccurate distributional results for robust distances, both in the reweighting step—
leading to discarding a proportion of units larger than the nominal one (10% in this
case)—and in the final test for outlier nomination.

We conclude our assessment by looking in the left-hand panel of Fig. 27 at the
estimated quantiles for MM-estimation as a function of efficiency. The right-hand
panel shows, for the reweightedMCD, the estimated quantiles of the squared distances
computed as a function of the probability used in reweighting. We see that both plots
broadly repeat the pattern alreadydepicted inFig. 25 by their less efficient counterparts,
but with a reduced agreement between empirical and asymptotic bands. This again is
the price to be paid in order to have more powerful detection tools with contaminated
data.

9 Discussion

The four examples analysed in this paper show howmonitoring can be used adaptively
to obtain robust estimators that are as efficient as possible. Depending on the estimator
we are often able to choose the lowest bdp, the highest efficiency or the largest value
of h consistent with downweighting or trimming outlying observations. Perhaps not
surprisingly, the four examples also show how this is decreasingly easy as the number
of outliers increases and as they become closer to the main body of the data. The limit
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Fig. 27 Estimated (dashed lines) and asymptotic (solid lines) quantiles of squared robust Mahalanobis
distances for samples of size n = 200 from the four-variate normal distribution. Left-hand panel: MM-
estimation as a function of efficiency. Right-hand panel: reweighted MCD as a function of the probability
of reweighting

is in the heavily contaminated examples, illustrated in Figs. 18 and 23 for S and MM
estimation, where monitoring is not able to detect any parameter values that provide
a robust fit.

The adaptive estimators we have obtained through monitoring, when they exist,
show a strong relationship to the results obtained from the FS. Like the FS they
avoid the awkward choices of efficiency and breakdown point which bedevil practical
applications of robust statistics. Of course, such tiresome choices can also be avoided
by using estimators such as the MCD with the highest possible breakdown point.
However, our results show that efficiency can often be appreciably improved through
the adaptive choice of the number of observations to be trimmed. In addition, as
illustrated by Riani et al. (2014a), our approach could also be useful to assess the
effect of other decisions required by robust techniques, such as the function ρ in S and
MM-estimation, not specifically addressed in this work.

Our paper, following the assertion of our title, demonstrates that monitoring can
provide the way of extracting the maximum information from a contaminated sample.
We look forward to the confirmation of our claim through the evidence of other data
analyses.
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