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a b s t r a c t

Robust distances are mainly used for the purpose of detecting multivariate outliers. The
precise definition of cut-off values for formal outlier testing assumes that the ‘‘good’’
part of the data comes from a multivariate normal population. Robust distances also
provide valuable information on the units not declared to be outliers and, under mild
regularity conditions, they can be used to test the postulated hypothesis of multivariate
normality of the uncontaminated data. This approach is not influenced by nasty outliers
and thus provides a robust alternative to classical tests for multivariate normality relying
onMahalanobis distances. One major advantage of the suggested procedure is that it takes
into account the effect induced by trimming of outliers in several ways. First, it is shown
that stochastic trimming is an important ingredient for the purpose of obtaining a reliable
estimate of the number of ‘‘good’’ observations. Second, trimming must be allowed for in
the empirical distribution of the robust distances when comparing them to their nominal
distribution. Finally, alternative trimming rules can be exploited by controlling alternative
error rates, such as the False Discovery Rate. Numerical evidence based on simulated and
real data shows that the proposed method performs well in a variety of situations of
practical interest. It is thus a valuable companion to the existing outlier detection tools
for the robust analysis of complex multivariate data structures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let y be a v-variate observation from a population with mean vectorµ and covariance matrixΣ . The robust analogue of
the (squared) Mahalanobis distance of y is

d2 = (y − µ̃)′Σ̃−1(y − µ̃), (1)

where µ̃ and Σ̃ are high-breakdown estimators of µ andΣ . For simplicity, we usually omit the fact that (1) is squared and
we call it a robust distance. Robust distances are computed for the purpose of detecting multivariate outliers. In fact, given a
sample of n observations y1, . . . , yn, the estimates µ̃ and Σ̃ are not affected by the presence of nasty outliers in the sample.
Therefore, the outliers themselves are revealed by their large distances (1) from the robust fit (Filzmoser et al., 2008; Hubert
et al., 2008; Van Aelst et al., 2012).

In this paper our choice for µ̃ and Σ̃ is the Reweighted Minimum Covariance Determinant (RMCD) estimator, for which
accurate distributional results exist; see (4) and (5). These results are crucial for the practical implementation of our proposal,
which extends the use of robust distances from outlier detection to goodness-of-fit testing. In particular, we exploit the fact
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that the distribution of the robust distances computed from the RMCD estimator depends on whether each observation
is trimmed or not in the outlier identification process. Although we are not aware of specific research in this direction,
we speculate that similar distributional results might be obtained if the RMCD is replaced by other estimators based on
a ‘‘hard-trimming’’ approach, such as impartial trimming (Garcìa-Escudero et al., 2008), trimmed maximum likelihood
(Cuesta-Albertos et al., 2008) and the Forward Search (Riani et al., 2009). Robust distances computed from high-breakdown
estimators exploiting a smooth weight function, such as S and MM-estimators (Maronna et al., 2006; Alfons et al., 2011;
Van Aelst and Willems, 2011), are instead compared to their asymptotic χ2

v distribution for all the observations y1, . . . , yn.
The simulation results of Cerioli et al. (in press) show that this asymptotic approximation can provide acceptable results
in the case of S-estimators for the purpose of outlier detection, when only the tail of the distribution is involved. However,
the degree of accuracy of the χ2

v approximation for the bulk of the data, which is crucial for our proposal, is unknown and
should be verified if µ̃ and Σ̃ in (1) are taken to be S-estimators. Given a satisfactory approximation for the distribution of
the robust distances of the uncontaminated observations, our robust approach to goodness-of-fit testingwould then remain
valid.

The RMCD estimator is computed in two stages. In the first stage, we fix a coverage n/2 ≤ h < n and we define the MCD
subset to be the sub-sample of h observationswhose covariancematrix has the smallest determinant. The second stage aims
at increasing efficiency, while preserving high-breakdown properties. For this purpose, a one-step reweighting scheme is
applied by giving weightwi = 0 to observations whose first-stage robust distance exceeds a threshold value. Otherwise the
weight iswi = 1. Letw =

n
i=1wi. The RMCD estimator of µ andΣ is then

µ̃RMCD =
1
w

n
i=1

wiyi, Σ̃RMCD =
kRMCD

w − 1

n
i=1

wi(yi − µ̃(RMCD))(yi − µ̃(RMCD))
′, (2)

where the scaling kRMCD serves the purpose of ensuring consistency at the normal model (Croux and Haesbroeck, 1999). Our
choice of the threshold required for computingwi is the 0.975 quantile of the scaled F distribution proposed by Hardin and
Rocke (2005). Our procedure then identifies multivariate outliers by means of the robust reweighted distances

d2i(RMCD) = (yi − µ̃(RMCD))
′Σ̃−1

(RMCD)(yi − µ̃(RMCD)) i = 1, . . . , n. (3)

Precise outlier identification requires cut-off values for the distances (3). Cerioli (2010a) shows that a very accurate
approximation is provided by considering

d2i(RMCD) ∼
(w − 1)2

w
Beta


v

2
,
w − v − 1

2


ifwi = 1 (4)

∼
w + 1
w

(w − 1)v
w − v

Fv,w−v ifwi = 0. (5)

Computation of these cut-off values assumes that the ‘‘good’’ part of the data comes from amultivariate normal population.
To a large extent, the same is true for most outlier identification methods; see, e.g., Filzmoser et al. (2008), Gallegos and
Ritter (2005), Garcìa-Escudero and Gordaliza (2005), Hardin and Rocke (2005), Riani et al. (2009) andWillems et al. (2009).
Furthermore, a computable formula for kRMCD in (2), as well as for the consistency factor of any other affine equivariant high-
breakdown estimator of Σ , is only available under that hypothesis (Todorov and Filzmoser, 2009). It is not exaggerated to
say thatmultivariate outlier detection relies heavily on the hypothesis of normality for the ‘‘good’’ part of the data. The same
is true for many other robust multivariate techniques, whose robustness properties have been studiedmainly at the normal
model (Croux and Haesbroeck, 2000; Croux and Dehon, 2010; Hubert and Van Driessen, 2004; Rousseeuw et al., 2004; Van
Aelst andWillems, 2011). It is thus instructive to see what happens when the normality assumption for the bulk of the data
is not fulfilled.

Fig. 1 displays the output of a standard exploratory analysis for multivariate outlier identification (Maronna et al.,
2006, p. 179). In the left-hand panels, the robust reweighted distances d2i(RMCD) are computed for a sample of n = 1000
observations with v = 5. Of these observations, 930 come from the N(0, Iv) distribution. The remaining 70 observations are
simulated from the shifted distribution

N(0 + λe, Iv), (6)

where e is a (column) vector of ones and λ is a positive scalar. In this example λ = 2.0, a modest amount of contamination.
The right-hand panels give the same information for a sample of n = 1000 observations simulated from the 5-variate t
distribution on 10 degrees of freedom. The threshold displayed in the upper row is the 0.99 quantile of distribution (5),
while the lower row compares the empirical quantiles of the robust distances to the theoretical values from the asymptotic
χ2
5 distribution. The conclusions reached in the two samples are similar, with about the same number of observations

labelled as outliers, a few borderline units, and no clear differences in the structure of the bulk of the data. Therefore, this
simple example clarifies that the knowledge usually conveyed by robust distances cannot help to discriminate between a
contaminated normal model and a non-normal population. Further evidence of the need for a more sophisticated approach,
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Fig. 1. Robust distances in two samples with n = 1000 and v = 5. Left (top and bottom panels): 930 observations from N(0, Iv) and 70 observations from
a location-shift contamination model. Right (top and bottom panels): 1000 observations from the 5-variate t distribution on 10 degrees of freedom.

which could distinguish between different generating models when outliers are present, is given in Section 7, where formal
goodness-of-fit testing is applied to these and real data.

The aim of this paper is to propose a statistically sound method which is able to detect departures from the postulated
normal model in the ‘‘good’’ part of the data, i.e. among the observations whose robust distances are below the threshold in
the upper row of Fig. 1. This goal is achieved by introducing a contamination model and by analysing, under mild regularity
conditions, the empirical distribution of the robust distances d2i(RMCD) for the units which are not likely to be contaminated.
One key issue in the suggested approach is the effect of stochastic trimming. Our consideration of this effect is twofold. First,
trimming is an important ingredient for the purpose of obtaining a reliable estimate of the number of ‘‘good’’ observations.
Second, we allow for trimming in the empirical distribution of the robust reweighted distances when comparing them to
their nominal distribution. Another important point of our proposal is the choice of the error rate to be controlled when
removing the outliers. We elaborate on this aspect by comparing the effect of different criteria, including individual and
simultaneous testing and False Discovery Rate control.

In the case v = 1, a related problem is studied by Alvarez-Esteban et al. (2010), who propose a goodness-of-fit test
comparing a trimmed version of the empirical distribution of the datawith the trimmedN(0, 1) distribution. Their approach
is based on the L2-Wasserstein metric and requires the choice of a user-defined threshold which controls the degree of
dissimilarity between the two (univariate) distributions. On the contrary, our procedure is simpler, relying on the classical
chi-square test, and fits very naturally in the multivariate context through the robust distances (3). The null hypothesis of
normality of a subset of the data coincides with the hypothesis that the selected subset arises from the normal component
of the mixture, if the contamination is far away from the mean of the normal component. This assumption is made explicit
in Section 3, specifically in our Lemma 1 and in the examples that follow it. Therefore, a bound on the distance between the
distribution of the clean and contaminated data is not explicitly needed. Coupling the accurate finite-sample approximation
(4) for the robust distances with the effect of trimming, allows our method to have good control of the size of the test of
multivariate normality, alsowith relatively small uncontaminated samples and large dimensions. The same is not necessarily
true, without Monte Carlo calibration, for other robust approaches to goodness-of-fit testing that rely on quantiles of the
asymptotic χ2

v distribution (Beirlant et al., 1999), or that neglect the importance of trimming (Singh, 1993).
The rest of this paper is organized as follows. In Section 2 we define the framework in which we work. The required

regularity conditions are stated in Section 3, where we also explore their implications. In Section 4 we address the effect of
stochastic trimming. Our robust chi-squared tests of multivariate normality are described in Section 5. In the same section,
we investigate their performance under the null. Power comparisons under different alternatives are provided in Section 6,
while numerical examples are described in Section 7. The paper ends with some final remarks in Section 8.
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Fig. 2. Left: Q–Q plot of the curves associated with the 1%, 50% and 99% quantiles of data from Mahalanobis distances (dotted lines) and data generated
directly from the Beta distribution (solid lines). Right: Q–Q plot of the distribution of the variances of numbers generated directly by the Beta distribution
and the variances of numbers which come from Mahalanobis distances.

2. Multivariate normality under contamination

We formalize our approach through a contamination model. We assume that y1, . . . , yn are independent, identically
distributed v-variate observations with common distribution

G(y) = γsupG0(y)+ (1 − γsup)G1(y), (7)

where (1− γsup) is the contamination rate and γsup > 0.5 is unknown. G0(y) and G1(y) denote the distribution functions of
the ‘‘good’’ and of the contaminated part of the data, respectively. LetΦ(y, µ,Σ) be the distribution function of the v-variate
normal distribution with mean µ and covariance matrixΣ . Our null hypothesis is then

H0 : G0(y) = Φ(y, µ0,Σ0), (8)

where µ0 andΣ0 are not known and must be estimated from the data.
As a referee noted, decomposition (7) is not unique unless we put additional assumptions on G0(·) and G1(·); see, e.g.,

Bordes et al. (2006) and Hunter et al. (2007) for such assumptions. There actually could be a set G, with more than one
element, such that for any (G0(·),G1(·), γsup) ∈ G the decomposition (7) holds. However, we are only interested in verifying
whether, among all (possibly infinite) two-component mixture combinations leading to G, there is at least one in which one
of the components is Gaussian and contains at least 50% of the data. Rejection of (8) with an appropriate test statistic would
then imply that, unless a type I error has occurred, there is no mixture with Gaussian component in this family, that is,
(Φ(y, µ0,Σ0),G1(·), γsup) ∉ G for any γsup > 0.5. A decomposition similar to (7) has been adopted, with similar reasoning,
also in Garcìa-Escudero and Gordaliza (2005).

One class of methods for checking multivariate normality (Mecklin and Mundfrom, 2004) is based on the comparison
between the empirical Mahalanobis distances (MD)

d2i = (yi − µ̂)′Σ̂−1(yi − µ̂) i = 1, . . . , n, (9)

where µ̂ and Σ̂ are the classical unbiased estimators ofµ andΣ , and the percentage points of their distribution at the normal
model, which is {(n − 1)2/n}Beta(0.5v, 0.5(n − v − 1)) (Atkinson et al., 2004). Although a visual approach based on Q–Q
plots can provide useful preliminary guidance, formal testing requires appropriate consideration of the effect of parameter
estimation and of the constraints implied by the use ofMahalanobis distances. In order to show this effectwehave conducted
a set of 10000 simulations each made up of datasets with n = 200 and v = 6. For each dataset we have stored the set of
the n ordered Mahalanobis distances, as given in Eq. (9) and then multiplied by 200/1992, and a set of n = 200 ordered
numbers generated from the Beta distribution with parameters (3, 193/2). We have then considered the quantiles 1%, 50%
and 99% of both sets of numbers over the collection of the 10000 repetitions. The left-hand panel of Fig. 2 compares these
sets of quantiles through a Q–Q plot. The solid lines refer to the data generated directly from the Beta distribution, while
the dotted lines consider the data associated with the Mahalanobis distances. We see from the plot that the data generated
from the Beta distribution have greater variability than those which come from theMahalanobis distances. Wemagnify this
phenomenon by comparing the ordered variances of the numbers generated directly from the Beta distribution with those
which come from theMahalanobis distances over all sets of simulations. A Q–Q plot of the two distributions, pictured in the
right-hand panel of Fig. 2, clearly shows that the distribution of the variances of the Mahalanobis distances is much more
concentrated.
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Table 1
Estimated size of the Pearson chi-square test of H0 comparing classical Mahalanobis distances to their scaled Beta
distribution, for n = 1000 and v = 5, when the data are generated from the contamination model (7) with G0(y) =

Φ(y, 0, Iv) and G1(y) the distribution function of (6). The entries in each column refer to nominal sizes 0.10 and 0.05,
respectively. 1000 simulations for each value of γsup and mean shift λ.

γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
λ = 0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

0.071 0.041 0.922 0.869 1.000 1.000 0.144 0.085 0.271 0.166 0.243 0.149 0.385 0.278

The phenomenonwhichwe have just seen can be explained as follows. Keeping into account that the sumofMahalanobis
distances (9) is equal to (n − 1)v (Atkinson et al., 2004, p. 86), we easily obtain that

n
(n − 1)2

n
i=1

d2i
n

=
v

n − 1
.

Notice also that if B ∼ Beta (0.5v, 0.5(n − v − 1))

E(B) =
v

n − 1
.

This implies that when we consider a set of n Mahalanobis distances we are considering a set of n random numbers from
the Beta (0.5v, 0.5(n − v− 1)) distribution with the constraint that their average must be exactly equal to the expectation
of the underlying Beta random variable. More precisely, in variability comparison, we store the two following deviances

n
i=1


n

(n − 1)2
d2i − µB

2 n
(n − 1)2

d2i ∼ B, µB =
v

n − 1

n
i=1

(yi − y)2 yi ∼ B, y =

n
i=1

yi

n
.

In the first case themean is fixedwhile in the second case themean is estimated. Therefore, the constraint on the distribution
of d2i due to estimation of µ andΣ may lead to empirical p-values in the goodness of fit tests which are much greater than
the expected ones.

The parameter constraint can be clearly seen both in the Kolmogorov–Smirnov and in the Cramér–von Mises tests,
whose asymptotic distributions are far from being standard when applied to empirical Mahalanobis distances (Beirlant
et al., 1999; Koziol, 1982). On the other hand, the Pearson chi-square test is less influenced by the effect of estimatingµ and
Σ . Moore and Stubblebine (1981) show that the asymptotic cut-off values of this test fall between those of the χ2

K−2 and
χ2
K−1 distributions, where K denotes the number of classes employed for computing the Pearson statistic. However, the chi-

square test based on theMahalanobis distances (9) is not robust and cannot be used to verifyH0. Table 1 reports its estimated
size for n = 1000, v = 5 and K = 30. Size is estimated using 1000 independent replicates of the contamination model (7),
with G0(y) = Φ(y, 0, Iv) and G1(y) the distribution function of (6). The reported results correspond to nominal test sizes of
0.10 and 0.05, and use cut-off values from the χ2

K−1 distribution. Similar results have been obtained with different values of
K . It is seen that the test is conservativewith uncontaminated data (γsup = 1), as expected. On the contrary, the actual size of
the test may explode when γsup < 1, because of the undue influence of the observations coming from G1. The impact of the
outliers is larger when the contamination rate is small and then decreases due to the effect of masking on the Mahalanobis
distances. Further evidence of this behaviour is shown in Section 7.2. When the contamination rate grows, masking also
causes a substantial bias in the non-robust estimates of µ and Σ , which produces a further increase in the actual test size.
Our results in the following sections demonstrate how the classical Mahalanobis distances can be replaced by their robust
counterpart (3) to obtain a valid test of H0.

3. Regularity conditions on the contaminant distribution

In the rest of this paper we assume that model (7) holds. We address in this section a brief theoretical study of the
regularity conditions on G1(y) needed for controlling the size of our robust goodness-of-fit test. These conditions are
intimately linked to the power of the outlier identification procedure when (8) is true.

We first note that, asymptotically, the RMCD outlier identification procedure is α-level:

Pr

d2i(RMCD) > χ2

v,1−α|γsup = 1;H0 is true


→ α, (10)

where χ2
v,1−α denotes the (1 − α)-quantile of the χ2

v distribution. This property follows from consistency of the RMCD
estimator at the normal model (Lopuhaä, 1999). We then define the probability, cG1 say, that an outlier is identified by the
RMCD rule under the contamination model (7):

cG1 = Pr

d2i(RMCD) > χ2

v,1−α|yi ∼ G1(y)

. (11)
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This quantity is equivalent to the asymptotic power of the outlier identification procedure for a single outlying entry, and is
an indirect measure of the separation between the normal and the contaminant distribution.

In what follows we use asymptotic approximations to cG1 . If µ andΣ were known, the distances

d2i = (yi − µ)′Σ−1(yi − µ), d2i′ = (yi′ − µ)′Σ−1(yi′ − µ)

would be independent for any yi and yi′ , with i ≠ i′, generated by G0(y) under H0. Therefore, for large sample sizes d2i(RMCD)

and d2i′(RMCD) are approximately independent under the same assumptions, due to consistency of the RMCD estimator.
Let αGOF be the size of a generic goodness-of-fit (GOF) test of multivariate normality when γsup = 1 (i.e., under no
contamination). Simple sufficient regularity conditions on G1(y) for this test to be of the same size αGOF when γsup ≤ 1 are
given in the following lemma:

Lemma 1. Let GOF(y) denote any GOF statistic which leads to an αGOF-level test of multivariate normality when γsup = 1.
For γsup ≤ 1, if cG1 = 1 then GOF(y) leads to an αGOF-level test. If (cG1)

n
→ 1, the test based on GOF(y) is asymptotically

αGOF-level.

Proof. We can decompose the GOF test level as

Pr(RGOF|H0) = Pr(RGOF|H0, all outliers removed) Pr(all outliers removed)
+ Pr(RGOF|H0, not all outliers removed) Pr(not all outliers removed) (12)

≤ αGOF(cG1)n(1−γsup) + 1 − (cG1)n(1−γsup), (13)

where RGOF denotes the event that the GOF test rejects the hypothesis of normality. Now, if cG1 = 1, then 1− (cG1)
nγsup = 0

and the last expression is exactly equal to αGOF. If (cG1)
n

→ 1, then 1 − (cG1)
nγsup → 0 and the last expression is asymptot-

ically equal to αGOF. �

The lemma shows us a potential ‘‘curse of sample size’’ situation. In fact, as n grows, it may be harder and harder to stay
close to the nominal level αGOF, as it may get harder and harder to identify all outliers. The problem can be solved in practice
by increasing the trimming level, thus increasing the likelihood of identifying all the observations coming from G1(y).

It is important to show under which circumstances cG1 can be assumed to be so large that, even if not exactly one, the
level of the goodness-of-fit test is not actually considerably inflated. First, note that by definition

Pr

d2i(RMCD) > χ2

v,1−α|yi ∼ G1(y)


→


{y:(y−µ0)′Σ

−1
0 (y−µ0)>χ

2
v,1−α}

dG1. (14)

Explicit expressions for cG1 can thus be obtained from (14) in some important special cases.

Example 1 (Point Mass Contamination). Assume G1(y) = ∆y0 , where ∆y is a Dirac measure putting all its mass at y. Write
d20(RMCD) for the robust distance corresponding to y0 and let I[·] be the indicator function. Then, (11) is equal to I

[d20(RMCD)>χ
2
v,1−α ]

.
Consequently, if we assume a point-mass contamination with outliers far enough from µ0, the GOF test will always be
asymptotically αGOF-level.

Example 2 (Mean ShiftModel). LetG1(y)be the distribution function ofN(µ1,Σ0).Writeχ2
v (nc) for a non-central chi-square

distribution on v degrees of freedom, with non-centrality parameter nc. Then,

cG1 = Pr(χ2
v (nc) > χ2

v,1−α),

where nc = 0.5(µ0 − µ1)
′(µ0 − µ1). It follows that, if the outliers arise from a Gaussian distribution, then cG1 increases

with the separation between the two centres of the Gaussian distributions. Furthermore the increase is at the same rate as
∥µ0 − µ1∥

2, where ∥ ∥ is the vector norm.

Example 3 (UniformMean ShiftModel).A special case of themean shiftmodel is provided by the distributionN(µ0+λe,Σ0),
as in (6). Then,

cG1 = Pr(χ2
v (0.5vλ

2) > χ2
v,1−α).

Wemay see this result as an instance of ‘‘blessing of dimensionality’’, which can be attributed to the fact that ∥e∥ increases
with the dimension: as v grows, the non-centrality parameter of the chi-square distribution increases. Consequently, cG1
gets closer and closer to 1 as v increases. In general, we can assume a shift λj for the jth dimension. In that case the non-
centrality parameter is 0.5


j λ

2
j , which grows to infinity as long as λj does not become too small as j grows. A similar

phenomenon is described for the PCOut approach of Filzmoser et al. (2008), where with increasing dimensions almost all
outliers are identified correctly.
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Table 2
Values of cG1 and cnG1 in the case of a uniform mean shift model with shift λ, for different values of n, v and λ.

v λ α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01
cG1 c200G1

c1000G1
5 2.5 0.88 0.72 0.00 0.00 0.00 0.00
5 3.75 1.00 1.00 0.80 0.25 0.32 0.00
5 5 1.00 1.00 1.00 1.00 1.00 0.99

10 2.5 1.00 1.00 0.08 0.00 0.00 0.00
10 3.75 1.00 1.00 1.00 1.00 1.00 0.99
10 5 1.00 1.00 1.00 1.00 1.00 1.00

Example 4 (General Gaussian Contamination). Let G1(y) be the distribution function of N(µ1,Σ1). Then,

cG1 = Pr


r

ηrχ
2
hr (δ

2
r ) > χ2

v,1−α


,

where ηr are the characteristic roots of Σ1Σ0, hr is the multiplicity of the rth root, and δr is a known linear combination
of µ0 − µ1 whose exact expression can be found in Scheffé (1959, p. 418). This last probability should be computed using
Monte-Carlo integration.

Table 2 shows the numerical values of cG1 and cnG1 in the case of a uniform mean shift model, for different values of n, v
and λ, when α = 0.05 and α = 0.01 in (10). The parameters are chosen to represent the simulation settings of Sections 4
and 5. This table gives us an account of the degree of separation which guarantees the required null performance of the
chosen goodness-of-fit test when γsup < 1. It can be seen that the magnitude of the mean shift λ needed to ensure that cnG1
is large enough decreases with dimensionality. For instance, λ = 3.75 is clearly not sufficient when v = 5, while the same
mean shift provides an almost perfect separation between G0(y) and G1(y)when v = 10.

A conservative upper boundon the level of theGOF test is readily obtained fromTable 2. For instance,whenλ = 3.75, v =

5, α = 0.05, γsup = 0.8 and n = 200, from (13) we can compute an upper bound on the level as 0.21. In practice the level
will be much smaller, as we will illustrate in our simulations of Section 5. We speculate that this happens because (12) is
actually a product of two probabilities which are unlikely to be both close to 1. Indeed, the most harmful contamination
instances for Pr(RGOF|H0) are those where the outliers lie sufficiently far from the bulk of the data, as shown in Table 1. But
in these cases the outlier detection rule will have high power and the quantity Pr(not all outliers removed)will be small.

4. Uncovering the ‘‘good’’ observations

In this section we show how to identify the observations that are likely to come from G0(y)when the null hypothesis (8)
is true. We also suggest a way to estimate their number after that trimming has taken place.

Let ωi0 = 1 if yi ∼ G0(y) and ωi0 = 0 if yi ∼ G1(y). Furthermore, let ⌊ ⌋ denote the integer part and

m0 =

n
i=1

ωi0 = ⌊nγsup⌋ (15)

be the total number of ‘‘good’’ observations. If we knew the weights ωi0, the Mahalanobis distances of these observations
would be

d2g = (yg − µ̂0)
′Σ̂−1

0 (yg − µ̂0) g = 1, . . . ,m0,

where

µ̂0 =

n
i=1
ωi0yi

m0
and Σ̂0 =

n
i=1
ωi0(yi − µ̂0)(yi − µ̂0)

′

m0 − 1
.

Under H0, d2g is distributed as

(m0 − 1)2

m0
Beta


v

2
,
m0 − v − 1

2


(16)

for any m0.
The distributional results of Cerioli (2010a) suggest that a scaled Beta distribution provides a satisfactory approximation

also when the unknown weights ωi0 are estimated robustly by means of the reweighted MCD distances (3). Cerioli (2010b)
shows empirical evidence supporting this approximation. Therefore, we base our goodness-of-fit analysis on the estimated
distances

d̂2g(α) = {yg − µ̂0(α)}
′Σ̂0(α)

−1
{yg − µ̂0(α)} g = 1, . . . , m̂0(α), (17)
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Table 3
Outcome in testing n observations for outlyingness
at level α.

Null hypotheses (20)
Not rejected Rejected Total

True N0|0 N1|0 M0
False N0|1 N1|1 M1
Total m̂0(α) R(α) n

where µ̂0(α) and Σ̂0(α) are the trimmed estimates of µ0 andΣ0 computed from the set of RMCD weights:

ω̂i0(α) = 0 if d2i(RMCD) > cutoffα (18)

ω̂i0(α) = 1 otherwise, (19)

cutoffα is the (1 − α)-quantile of the relevant distribution in (4) and (5), and m̂0(α) =
n

i=1 ω̂i0(α). In words, d̂21(α), . . . ,
d̂2m̂0(α)

(α) are the distances of the units (suitably rearranged) that are not declared to be outliers at trimming level α by the
RMCD rule using (4) and (5). Discussion about the choice of α is given later in this section and in Section 5, together with
further implications of the regularity conditions stated in Lemma 1.

One crucial issue in the scaled Beta approximation to the distribution of d̂2g(α), g = 1, . . . , m̂0(α), is that we need a
reliable estimate of m0 in (16). The plug-in estimator m̂0(α) is not adequate, since it does not take into account the effect
of stochastic trimming in the outlier detection process. To solve this problem, we follow Cerioli and Farcomeni (2011) and
approach outlier identification in a multiple testing framework, where the n individual hypotheses

H0i : yi ∼ N(µ0,Σ0), i = 1, . . . , n, (20)

are tested in sequence by the RMCD rule using the (1−α)-quantiles of (4) and (5). The full outcome of this process is shown
in Table 3, where R(α) denotes the number of observations for which (20) is rejected, i.e. the number of nominated outliers,
at the chosen level α. Asymptotically, this level satisfies condition (10).

We adopt an operational scheme in which observations are drawn at random from the contamination model (7). In this
scheme, let Vi be the event H0i is true and Ri be the event H0i is rejected. If (8) holds, Vi is randomwith Pr{Vi} = γsup.
Therefore, in Table 3

M0 = E


n

i=1

IH0i is true


= n Pr{Vi} = nγsup = m0,

neglecting terms of order at most 1/n.
If condition (11) is fulfilled, there is no asymptotic masking, i.e. we expect N0|1 ≈ 0. Therefore,

E{m̂0(α)} ≤ m0

because the outlier detection rule is stochastic and N1|0 ≥ 0. Specifically,

E{m̂0(α)} = ⌊m0 − m0PCER⌋ = ⌊m0(1 − PCER)⌋, (21)

where PCER is the Per-Comparison Error Rate (Farcomeni, 2008). In our framework

PCER = E(N1|0/n) = E


n

i=1

I[Vi


Ri]


/n = Pr


Vi


Ri


= Pr {Ri|Vi} Pr{Vi}, (22)

recalling that

E


I[Vi


Ri]


= Pr

Vi


Ri


is the same for all observations. The quantity

Pr {Ri|Vi} = α

is the (constant) probability of a Type-I error when testing each H0i in (20). We also suggest to use

Pr{Vi} =
m̂0(α)

n
,

as a preliminary estimate of Pr{Vi} in (22), thus yielding

PCER = α
m̂0(α)

n
.
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Table 4
Estimates of m0 under the null hypothesis (8) using 1000 replicates of (23) for n = 200, v = 5 (first row), v = 10 (second row) and
different values of γsup , mean shift λ in the contaminant distribution (6) and trimming level α in the RMCD detection rule using (5) and
(4). The last two values of α refer to simultaneous sizes 0.05 and 0.01 under Sidak correction.

α γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
m0 = 200 m0 = 180 m0 = 180 m0 = 160 m0 = 160 m0 = 140 m0 = 140
λ = 0.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

0.05 198.66 180.61 179.95 161.84 160.00 146.82 139.23
198.91 180.06 179.87 159.89 159.80 139.54 139.16

0.01 199.42 181.34 180.40 164.60 160.71 155.84 139.94
199.44 180.43 180.40 160.72 160.68 140.38 139.92

0.0002564 200.00 186.04 180.97 176.50 160.97 177.79 140.98
200.00 181.16 180.95 161.52 160.96 143.39 140.98

0.0000503 200.00 188.87 181.00 182.28 161.00 185.19 141.00
200.00 181.51 180.99 162.47 161.00 145.79 141.00

Table 5
Estimates of m0 under the null hypothesis (8) using 1000 replicates of (23) for n = 1000, v = 5 (first row), v = 10 (second row) and
different values of γsup , mean shift λ in the contaminant distribution (6) and trimming level α in the RMCD detection rule using (5) and (4).
The last two values of α refer to simultaneous sizes 0.05 and 0.01 under Sidak correction.

α γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
m0 = 1000 m0 = 900 m0 = 900 m0 = 800 m0 = 800 m0 = 700 m0 = 700
λ = 0.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

0.05 996.31 898.19 897.44 798.58 796.16 701.27 694.76
996.28 896.66 896.68 794.93 794.71 693.79 693.61

0.01 998.71 902.81 900.52 806.25 800.47 716.61 699.58
998.81 900.47 900.28 800.11 799.93 699.39 699.32

0.0000513 1000.00 928.09 900.96 865.67 800.97 838.00 700.99
1000.00 901.87 900.96 803.16 800.97 704.80 700.97

0.0000101 1000.00 941.01 900.99 893.60 800.99 882.00 701.00
1000.00 903.32 900.99 806.27 800.99 709.99 701.00

From (21), our final estimator ofm0 is then

m̂0 =


m̂0(α)

1 − PCER


+ 1 =


nm̂0(α)

n − αm̂0(α)


+ 1. (23)

Correspondingly,

γ̂sup =

PCER

α(1 − PCER)
=

m̂0(α)

n − αm̂0(α)
.

The empirical performance of (23) is investigated in Table 4, for n = 200, and in Table 5, with n = 1000. In both cases,
we report Monte Carlo estimates of E(m̂0) under the null hypothesis of multivariate normality (8), with G0(y) = Φ(y, 0, Iv)
and G1(y) the distribution function of (6), for different values of v, α, γsup and λ.

It is clearly seen that the empirical performance of m̂0 is very satisfactory in most cases. As expected from Lemma 1,
the mean of our estimator is close to the nominal target in all the simulations settings for which cG1 ≈ 1. The additional
good news is that performance remains satisfactory even in many situations where cG1 ≪ 1 in Table 2. In those instances,
the upper bound provided by (13) is clearly too conservative. Positive bias of m̂0 can become a problem, with strongly
overlapping populations, only when the trimming probability α is small, as in the case of Sidak correction, the sample size
is large and v is small. These unfavourable settings correspond to the most extreme conditions under which Lemma 1 does
not hold. With no contamination (γsup = 1), or with two well separated populations, the bias may become negative if α
increases, due to the asymptotic nature of the correction factor kRMCD in (2). However, this effect is seen to be negligible
even with α as large as 0.05.

An alternative estimate of the weightsωi0 is suggested by Cerioli (2010b), who uses the first-stage robust MCD distances,
instead of the reweighted ones, in (18) and (19). Computational simplicity is the main motivation for that estimate, which
can be implemented as a byproduct of the RMCD computations in (2). However, the results for that estimate are slightly
inferior, albeit similar, to those reported in Tables 4 and 5, and we do not consider them further. The naive procedure using
m̂(α) in Table 3 as the final estimate of m0 yields systematic underestimation of the true value if cG1 ≈ 1. Also in this case
we do not give the results in detail, but we postpone evidence of this effect to Section 5.2.

5. Robust chi-square tests of multivariate normality

We now describe our robust chi-square tests of multivariate normality after outlier removal. The null hypothesis H0 is
stated in (8). Our choice of the Pearson statistic is motivated by the minor impact of parameter estimation, as shown in
Table 1 for γsup = 1.
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Table 6
Estimates of the size of the test of H0 using X2

{RMCD0.975(α)} in the case n = 200, v = 5 (first row), v = 10 (second row) and K = 20,
for a nominal test size αGOF = 0.05. α is the nominal size for the RMCD outlier detection rule using (5) and (4). 1000 simulations for each
value of γsup and mean shift λ in the contaminant distribution.

α γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
m0 = 200 m0 = 180 m0 = 180 m0 = 160 m0 = 160 m0 = 140 m0 = 140
λ = 0.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

0.05 0.033 0.039 0.044 0.029 0.034 0.034 0.047
0.037 0.044 0.038 0.044 0.036 0.040 0.045

0.01 0.041 0.042 0.030 0.033 0.040 0.063 0.039
0.033 0.041 0.037 0.041 0.042 0.045 0.038

0.0002564 0.041 0.058 0.029 0.076 0.034 0.083 0.040
0.037 0.032 0.044 0.049 0.037 0.042 0.043

0.0000503 0.041 0.099 0.030 0.084 0.035 0.058 0.040
0.033 0.038 0.043 0.050 0.037 0.056 0.042

Table 7
Estimates of the size of the test of H0 using X2

{RMCD0.975(α)} in the case n = 1000, v = 5 (first row), v = 10 (second row) and K = 30,
for a nominal test size αGOF = 0.05. α is the nominal size for the RMCD outlier detection rule using (5) and (4). 1000 simulations for each
value of γsup and mean shift λ in the contaminant distribution.

α γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
m0 = 1000 m0 = 900 m0 = 900 m0 = 800 m0 = 800 m0 = 700 m0 = 700
λ = 0.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

0.05 0.046 0.041 0.035 0.041 0.034 0.046 0.042
0.041 0.037 0.028 0.031 0.055 0.043 0.051

0.01 0.039 0.027 0.033 0.048 0.021 0.098 0.039
0.039 0.052 0.042 0.030 0.034 0.038 0.029

0.0000513 0.041 0.425 0.038 0.553 0.034 0.254 0.029
0.038 0.036 0.047 0.030 0.042 0.052 0.044

0.0000101 0.041 0.780 0.040 0.471 0.034 0.182 0.030
0.037 0.035 0.046 0.058 0.043 0.099 0.043

5.1. The X2
{RMCD0.975(α)} test

This goodness-of-fit test compares the empirical distribution of distances (17) with the quantiles of a truncated scaled
Beta distribution. The acronym recalls that, before the chi-square test, outliers are removed at level α bymeans of the robust
reweighted distances d2i(RMCD), after preliminary trimming at probability 0.975 in the MCD step.

The test statistic is defined as follows:

X2
{RMCD0.975(α)} =

K
k=1


nk{d̂2(α)} − nk{d̂2}

2
nk{d̂2}

, (24)

where K is the number of classes in which the observations are partitioned, nk{d̂2(α)} is the number of units, among m̂0(α),
for which distance (17) falls within class k and nk{d̂2} is the predicted number of such units under the null distribution.
According to (16), our estimate of the null distribution of the distances is

m̂0

m̂0(α)
Pr

(m̂0 − 1)2

m̂0
Beta


v

2
,
m̂0 − v − 1

2


≤ d̂2


,

where m̂0 is the estimate of the number of ‘‘good’’ units given in Eq. (23). The factor m̂0/m̂0(α) allows for the effect of
stochastic trimming among the units forwhichH0 is true, sincewe can only observe m̂0(α) ≤ m0 such units. The distribution
of the corresponding distances d̂2g(α), g = 1, . . . , m̂0(α), is thus a truncated scaled Beta distribution and the probability of
truncation is estimated by m̂0(α)/m̂0. We compare our test statistic (24) to the slightly conservative χ2

K−1 approximation,
as in Table 1. In our computations, we take equiprobable classes under H0 and we choose values of K close to the common
practical recommendation K = 2n2/5.

Table 6 reports the estimated size of the test of H0 using X2
{RMCD0.975(α)} for n = 200, K = 20, v = 5 and v = 10,

and different trimming levels α, when the nominal size is αGOF = 0.05. In this simulation G0(y) = Φ(y, 0, Iv) and G1(y)
is the distribution of the shifted model (6). Table 7 repeats the analysis in the case n = 1000. The overall structure of the
results parallels the findings of Section 4, but with the additional insight provided by precise quantification of the effect of
estimatingm0 on test sizes. We conclude that the null performance of our test is akin to that of the classic procedure when
γsup = 1, but much better if γsup < 1. Our method is robust against outliers and is able to control the size of the test of
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Table 8
Estimates of the size of the test of H0 using the naive approach with trimming level α = 0.05, for a nominal test size αGOF = 0.05.
For each n, the first row refers to v = 5, and the second row to v = 10. 1000 simulations for each value of γsup and mean shift λ in
the contaminant distribution.

γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
λ = 0.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

n = 200 0.136 0.102 0.135 0.076 0.119 0.082 0.099
0.171 0.167 0.140 0.132 0.111 0.104 0.100

n = 1000 1.000 0.985 0.987 0.878 0.919 0.551 0.807
1.000 0.997 0.999 0.979 0.967 0.887 0.879

multivariate normality in most of the selected parameter settings. Contamination becomes a serious problem only if α is
very small, as in the case of simultaneous testing corrections, and when n is large, as anticipated by Lemma 1. We again see
evidence of the ‘‘blessing of dimensionality’’ effect when v = 10.

5.2. The effect of trimming

The naive approach to robustness, which is sometimes advocated in textbooks or in applied work (Singh, 1993;
Gnanadesikan, 1997, p. 296), is to apply the standard methods to the observations that remain after outlier removal,
without taking the effect of trimming into account. This reduces to computation of (24) with the theoretical frequencies
nk{d̂2}, k = 1, . . . , K , obtained from the scaled Beta distribution

{m̂0(α)− 1}2

m̂0(α)
Beta


v

2
,
m̂0(α)− v − 1

2


,

which takes m̂0(α) from Table 1 as the final estimate ofm0.
Table 8 shows the null performance of the naive approach, in the case of trimming levelα = 0.05, for the same simulation

setting considered in Section 5.1. Comparison with Tables 6 and 7 shows that neglecting the effect of trimming can be
very dangerous, especially if n grows. Remarkably, there is no ‘‘blessing of dimensionality’’ in this case, as performance
deteriorates as v increases from 5 to 10.

5.3. FDR control in outlier detection

The theoretical result of Lemma 1 and the simulation evidence of Sections 4 and 5.1 do not support the use of strong
multiplicity adjustments, like the Sidak correction, in the outlier detection step. Furthermore, the bias in the goodness-of-
fit procedure possibly introduced by multiplicity adjustments is higher for large n. These findings suggest the opportunity
of adopting outlier detection rules that only provide weak control of simultaneity in repeated testing of the n individual
hypotheses (20). One example of weak control is the choice of the False Discovery Rate (FDR) of Benjamini and Hochberg
(1995) as the relevant penalty. A potential advantage of this approach over PCER control is an increase of power due to
reduced trimming when H0 is false.

Cerioli and Farcomeni (2011) show how FDR control can be exploited for the purpose of multivariate outlier detection,
providing a sensible compromise between high power and low swamping. Their procedure computes the p-values of the
robust reweighted distances d2i(RMCD), i = 1, . . . , n, according to distributions (4) and (5). FDR control leads to an alternative
estimate of the trimming weights (15):

ω̃i0(α) = 0 if pi < ρiα/n (25)
ω̃i0(α) = 1 otherwise,

where pi is the p-value of d2i(RMCD) and ρi is the rank of pi. Now α denotes the chosen threshold of FDR. Let m̃0(α) =n
i=1 ω̃i0(α). Our FDR-based estimator ofm0 is

m̃0 =


nm̃0(α)

n −

{n − m̃0(α)}

α
n


m̃0(α)


+ 1. (26)

The derivation of m̃0 is similar to that of (23), with PCER now estimated by

PCER =


{n − m̃0(α)}

α

n

 m̃0(α)

n
.

This PCER estimate relies on the approximation

Pr{R(i)|V(i)} ≈ {n − m̃0(α)}
α

n
,
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Table 9
Estimates of the size of the test of H0 using X2

{FDR–RMCD0.975(α)}, for a nominal test size αGOF = 0.05. For each n, the first row
refers to v = 5, and the second row to v = 10. Here, α is the nominal value of the FDR to be controlled in the outlier detection
rule using (5) and (4). 1000 simulations for each value of γsup and mean shift λ in the contaminant distribution.

α γsup = 1 γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0 λ = 2.5 λ = 5.0

n = 200

0.05 0.032 0.044 0.036 0.042 0.035 0.052 0.041
0.033 0.038 0.031 0.035 0.029 0.045 0.044

0.01 0.035 0.048 0.024 0.052 0.041 0.069 0.039
0.035 0.041 0.043 0.037 0.047 0.030 0.053

n = 1000

0.05 0.038 0.024 0.034 0.057 0.028 0.070 0.039
0.043 0.034 0.040 0.037 0.037 0.032 0.032

0.01 0.040 0.046 0.037 0.133 0.031 0.240 0.029
0.038 0.034 0.040 0.024 0.036 0.037 0.043

where Pr{R(i)|V(i)} is the probability of a false rejection for the ith ordered p-value andn−m̃0(α) is thenumber of observations
declared to be outliers by (25).

The relevant distances for goodness-of-fit testing are now written as d̃2g(α), g = 1, . . . , m̃0(α), and are the analogue of
(17). In obvious notation, the resulting goodness-of-fit statistic is

X2
{FDR–RMCD0.975(α)} =

K
k=1


nk{d̃2(α)} − nk{d̃2}

2
nk{d̃2}

, (27)

with the estimated theoretical frequencies nk{d̃2} obtained from the distribution

m̃0

m̃0(α)
Pr

(m̃0 − 1)2

m̃0
Beta


v

2
,
m̃0 − v − 1

2


≤ d̃2


.

The test statistic is again compared to the χ2
K−1 distribution.

We omit the details about the (generally good) properties of (26) as an estimator of m0 and we directly show evidence
of the null behaviour of X2

{FDR–RMCD0.975(α)}, in the same simulation setting as given in Section 5.1. Table 9 provides the
results for a nominal test size αGOF = 0.05. It is seen that weak control of simultaneity of outlier tests, as guaranteed by
the FDR trimming rule, does not alter the null properties of the goodness-of-fit procedure when γsup = 1. If the data are
contaminated, liberality of X2

{FDR–RMCD0.975(α)} becomes a serious problem only under extreme overlapping and with
α = 0.01. We thus argue that FDR trimming of outliers can be a sensible solution also for the purpose of robust goodness-
of-fit testing, provided that α is not chosen to be too small.

5.4. Alternative contamination models

In Sections 5.1–5.3 the contamination distribution G1(y) of model (7) has been taken to be unimodal, so that we have
only described the case of clustered outliers. We now show the performance of our approach when the outliers are more
dispersed. Specifically, we consider two alternative contamination schemes. The first one is given by a bimodalmodel where
G1(y) is the distribution function of

π1N(0 + λ1e, Iv)+ π2N(0 + λ2e, Iv), (28)

with λ2 > λ1 > 0 and mixing proportions π1 = π2 = (1 − γsup)/2. Our second alternative contamination model is that of
radial contamination, where G1(y) is the distribution function of

N(0, ψ Iv), (29)

for ψ > 1.
Table 10 displays the results under model (28) in the case of n = 200, v = 5 and v = 10, for αGOF = 0.05, λ1 = 2.5

and different values of the second group mean λ2. Table 11 repeats the analysis under model (29) for different choices of
the variance inflation factor ψ . In both instances the main conclusions remain unaltered with respect to those we have
seen under the unimodal shift contamination model (6). Our test procedures have a satisfactory performance in most of the
selected simulation settings, the only exceptions being when G0(y) and G1(y) strongly overlap and the amount of trimming
is not sufficient to separate them. Furthermore, we see that control overαGOF = 0.05 increaseswith the degree of separation
between G0(y) and G1(y), as predicted by Lemma 1. The dimension v again has a beneficial effect for this purpose.
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Table 10
Estimates of the size of the test ofH0 using X2

{RMCD0.975(α)} and X2
{FDR–RMCD0.975(α)} undermodel (28), with

αGOF = 0.05, n = 200 and λ1 = 2.5, for different values of λ2 . For each α, the first row refers to v = 5, and the
second row to v = 10. 1000 simulations for each value of γsup and λ2 .

α γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
λ2 = 3.5 λ2 = 5.0 λ2 = 3.5 λ2 = 5.0 λ2 = 3.5 λ2 = 5.0

X2
{RMCD0.975(α)}

0.05 0.034 0.041 0.035 0.035 0.030 0.049
0.043 0.048 0.035 0.035 0.045 0.044

0.01 0.040 0.029 0.038 0.039 0.056 0.056
0.034 0.038 0.022 0.045 0.043 0.032

X2
{FDR–RMCD0.975(α)}

0.05 0.040 0.030 0.049 0.038 0.051 0.061
0.035 0.031 0.026 0.039 0.035 0.038

0.01 0.035 0.033 0.047 0.052 0.064 0.054
0.035 0.045 0.037 0.047 0.038 0.045

Table 11
Estimates of the size of the test ofH0 using X2

{RMCD0.975(α)} and X2
{FDR–RMCD0.975(α)} undermodel (29), with

αGOF = 0.05 and n = 200, for different values of ψ . For each α, the first row refers to v = 5, and the second row
to v = 10. 1000 simulations for each value of γsup and ψ .

α γsup = 0.9 γsup = 0.9 γsup = 0.8 γsup = 0.8 γsup = 0.7 γsup = 0.7
ψ = 9 ψ = 16 ψ = 9 ψ = 16 ψ = 9 ψ = 16

X2
{RMCD0.975(α)}

0.05 0.038 0.049 0.034 0.030 0.052 0.042
0.039 0.034 0.031 0.029 0.042 0.027

0.01 0.041 0.039 0.038 0.038 0.104 0.037
0.038 0.040 0.030 0.035 0.041 0.041

X2
{FDR–RMCD0.975(α)}

0.05 0.038 0.033 0.035 0.034 0.084 0.030
0.041 0.048 0.029 0.046 0.043 0.037

0.01 0.047 0.041 0.095 0.049 0.298 0.057
0.027 0.042 0.041 0.035 0.035 0.038

6. Power of the robust tests

We evaluate power for the robust goodness-of-fit procedures that have shown the best performance under H0 in the
different simulation settings. Therefore, we compare

• X2
{RMCD0.975(0.05)}, i.e. test statistic (24) with α = 0.05

• X2
{FDR–RMCD0.975(0.05)}, i.e. test statistic (27) with α = 0.05.

When v = 10, we also consider

• X2
{RMCD0.975(0.05S)}, i.e. test statistic (24) with multiplicity-adjusted trimming level α = 1 − (1 − 0.05)1/n.

As a reference, we also include in our comparisons the non-robust chi-square test (X2) described in Table 1. We estimate
power by the proportion of simulations in which the null hypothesis (8) is correctly rejected. Computations are based on
1000 independent simulations for each parameter setting.We consider alternative hypotheses defined both by heavy-tailed
and skew distributions.

6.1. Multivariate t alternative

Our first power scenario under the alternative hypothesis is run with

G0(y) = G1(y) = Tν,

where Tν is the distribution function of the v-variate t distribution with ν degrees of freedom.
Table 12 displays the results for the case n = 200, with αGOF = 0.05 and K = 20. Table 13 repeats the analysis for

n = 1000 and K = 30. The non-robust test X2 has obviously the highest power, but it is not an eligible procedure in
view of the results of Table 1. Nevertheless, it provides a useful benchmark for evaluating the loss of power which is due to
trimming. It is seen that the power of all robust tests increases with n and v, as it should. The price to pay for robustness
can be considerable if outlier detection is done at individual level α = 0.05, but becomes minor for the simultaneous rules
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Table 12
Estimates of the power of the test of H0 using different statistics for n = 200 and K = 20, when all
the observations are generated from a multivariate t distribution with ν degrees of freedom. 1000
simulations for each value of v and ν. The nominal test size is αGOF = 0.05.

ν = 2 ν = 6 ν = 10 ν = 16

v = 5 X2 1.000 0.985 0.672 0.259
X2

{RMCD0.975(0.05)} 0.740 0.248 0.127 0.061
X2

{FDR–RMCD0.975(0.05)} 0.925 0.624 0.410 0.197
v = 10 X2 1.000 1.000 0.994 0.783

X2
{RMCD0.975(0.05)} 0.969 0.700 0.383 0.168

X2
{FDR–RMCD0.975(0.05)} 0.994 0.953 0.814 0.593

X2
{RMCD0.975(0.05S)} 1.000 0.999 0.957 0.693

Table 13
Estimates of the power of the test of H0 using different statistics for n = 1000 and K = 30, when
all the observations are generated from a multivariate t distribution with ν degrees of freedom. 1000
simulations for each value of v and ν. The nominal test size is αGOF = 0.05.

ν = 2 ν = 6 ν = 10 ν = 16

v = 5 X2 1.000 1.000 1.000 0.970
X2

{RMCD0.975(0.05)} 1.000 0.872 0.451 0.192
X2

{FDR–RMCD0.975(0.05)} 1.000 1.000 0.995 0.908
v = 10 X2 1.000 1.000 1.000 1.000

X2
{RMCD0.975(0.05)} 1.000 1.000 0.986 0.807

X2
{FDR–RMCD0.975(0.05)} 1.000 1.000 1.000 1.000

X2
{RMCD0.975(0.05S)} 1.000 1.000 1.000 1.000

Table 14
Estimates of the power of the test of H0 using different statistics for n = 200 and K = 20, when all
the observations are generated from a multivariate Gaussian copula distribution with χ2

ν univariate
marginals and common correlation ρ. 1000 simulations for each value of ρ and ν. The nominal test size
is αGOF = 0.05.

ν = 2 ν = 6 ν = 10 ν = 16

ρ = 0.1 X2 1.000 0.657 0.258 0.115
X2

{RMCD0.975(0.05)} 0.478 0.073 0.049 0.034
X2

{FDR–RMCD0.975(0.05)} 0.676 0.246 0.136 0.083
ρ = 0.9 X2 1.000 0.999 0.830 0.409

X2
{RMCD0.975(0.05)} 0.998 0.315 0.109 0.054

X2
{FDR–RMCD0.975(0.05)} 0.998 0.496 0.270 0.172

adopted in X2
{FDR–RMCD0.975(0.05)} and X2

{RMCD0.975(0.05S)}. Our simulation findings thus support the conclusion that
a simultaneous approach to outlier detection in (20) enhances the power of the subsequent robust goodness-of-fit test. From
this point of view,weak control ofmultiplicity, as in X2

{FDR–RMCD0.975(0.05)}, can provide a sensible compromise between
size and power requirements, especially when the number of variables is not very high.

6.2. Multivariate skew alternative

Our second power scenario is

G0(y) = G1(y) = Sν,

where Sν is the distribution function of a v-variate random variable defined through a Gaussian copula function from
univariate χ2

ν marginals. The one-dimensional marginal distributions of Sν are thus skew, as are the bivariate and higher-
order marginals. The univariate marginal distributions are also dependent, with correlation ρ.

Our simulation setting for Sν is similar to that for Tν , with the additional complexity induced by the possible influence
of different correlation values. Therefore, we only report the results obtained in the case v = 5, for which the effect of
trimming is larger, for varying degrees of freedom ν and two values ρ associated to low and high correlation. Table 14 refers
to the case n = 200, while Table 15 is for n = 1000. Power against this skew alternative is generally lower than power
against the multivariate t distribution, not only for the robust tests, but also for X2. However, the relative performance of
the different procedures repeats almost exactly what we have already learnt in Section 6.1. The magnitude of power also
increases with both n and ρ. We thus conclude that our robust goodness-of-fit procedures, and particularly the one based
on FDR trimming of outliers, can be effective also for the purpose of detecting multivariate skew alternatives.
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Table 15
Estimates of the power of the test of H0 using different statistics for n = 1000 and K = 30, when
all the observations are generated from a multivariate Gaussian copula distribution with χ2

ν univariate
marginals and common correlation ρ. 1000 simulations for each value of ρ and ν. The nominal test size
is αGOF = 0.05.

ν = 2 ν = 6 ν = 10 ν = 16

ρ = 0.1 X2 1.000 1.000 0.979 0.719
X2

{RMCD0.975(0.05)} 0.000 0.216 0.074 0.066
X2

{FDR–RMCD0.975(0.05)} 0.000 0.844 0.671 0.427
ρ = 0.9 X2 0.000 1.000 1.000 0.999

X2
{RMCD0.975(0.05)} 0.000 0.904 0.320 0.091

X2
{FDR–RMCD0.975(0.05)} 0.000 0.996 0.899 0.765

Table 16
Example 1: Empirical results of robust goodness-of-fit testing with K = 30 and different trimming levels.
Pearson X2 statistics with p-values in parentheses.

Contaminated normal sample Multivariate t
sample

X2
{RMCD0.975(0.05)} 33.97 (0.240) 44.89 (0.030)

X2
{RMCD0.975(0.01)} 24.20 (0.719) 67.93 (<0.001)

X2
{FDR–RMCD0.975(0.05)} 21.30 (0.848) 77.20 (<0.001)

X2
{FDR–RMCD0.975(0.01)} 39.04 (0.101) 109.55 (<0.001)

7. Data analysis

7.1. Example 1: simulated data of Section 1

We first apply our robust test of multivariate normality to the motivating example of Section 1 based on simulated
data, whose exploratory analysis was displayed in Fig. 1. The standard goodness-of-fit approach, comparing the classical
Mahalanobis distances (9) to their nominal distribution

{(1000 − 1)2/1000}Beta(2.5, 497),

produces the highly significant Pearson statistic X2
= 54.98 for the contaminated normal sample, based on K = 30 classes.

A similar conclusion is reached for the multivariate t sample, where X2
= 122.72.

The goodness-of-fit results obtained through our robust approach, againwithK = 30, are given in Table 16 for alternative
trimming choices. Now the difference between the two data structures is paramount. Even for the highest level of trimming
α = 0.05, both our tests lead to the correct conclusion that the hypothesis ofmultivariate normality for the bulk of the data is
acceptable in one instance, but has to be rejected in the other case. It is worth noting that the naive approach, which does not
take the effect of trimming into account, also fails in this example, leading to a significant value of X2 for the contaminated
normal sample when the outliers are removed.

One referee has pointed out that some people could be comfortable with the decision of rejecting the normality
hypothesis if a dataset is nicely generated from a normal distribution and some outliers are present, as in the contaminated
normal sample of this example. Nevertheless, we emphasize that the classical test is not able to tell if the majority of the
data actually follow the multivariate normal distribution. It is only through our robust procedure that it is possible to divide
the goodness-of-fit problem into its main components: the behaviour of the bulk of the data and the effect of the outliers.
Another major disadvantage of the classical test is masking, which may obscure the existence of a nice normal structure
contaminated by outliers. The effect of masking is made clear in the following example.

7.2. Forged Swiss banknotes

Flury and Riedwyl (1988) introduce data on six variables measuring the size and other features of 200 Swiss banknotes,
100 ofwhich are classified as genuine and100 as forged. The noteswerewithdrawn fromcirculation and then classified by an
expert. From the quality process, we may expect the sample of genuine notes to be homogeneous and normally distributed,
except perhaps for a couple of possibly misclassified notes (Atkinson et al., 2004, pp. 116–137). On the other hand, the
group of forged notes is known to be heterogeneous, perhaps due to the action of different forgers. Heterogeneity leads to
the presence of at least 15well identified outliers (Garcìa-Escudero andGordaliza, 2005; Cerioli, 2010a).We thus analyse the
sample of forged notes through our robust goodness-of-fit approach, with the aim of checking if the normality assumption
is tenable for the bulk of forged notes as well.

Fig. 3 displays Q–Q plots of the squared Mahalanobis distances (9) and of their robust counterparts (3), against the
asymptotic χ2

6 distribution. Inspection of the robust distances clearly shows the existence of a number of outliers, which
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Fig. 3. Forged Swiss bank notes: Q–Q plots of Mahalanobis (left) and robust (right) squared distances.

are instead masked in the classical distances. Although the right-hand panel may suggest the idea of a normally generated
sample with some outliers added, as in Example 1, the classical distances are unable to reveal this structure. Therefore, we
conclude that the standard goodness-of-fit approach based on (9), yielding the non-significant value X2

= 5.8 with K = 10
classes, is unreliable in this example. On the contrary, the Pearson statistic for the robust distances is X2

= 21.8 a largely
significant outcome.

Our robust test takes a different view, by separating the effect of the outliers in the right-hand panel of Fig. 3 from that
of the majority of the data. The results for trimming level α = 0.05 and K = 10 are (p-value in parentheses)

X2
{RMCD0.975(0.05)} = 10.12 (0.341);

X2
{FDR–RMCD0.975(0.05)} = 3.72 (0.929).

They confirm that the ‘‘best’’ forged notes in this sample actually follow the multivariate normal model typical of genuine
notes.

8. Concluding remarks

In this paperwehave developed a robust distance-based procedure for the purpose of testingmultivariate normalitywith
contaminated data. Our approach is made up of two steps, the first being accurate outlier removal through appropriate cut-
off values for the robust distances, and the second being careful goodness-of-fit testing on the supposedly uncontaminated
observations. We have shown that, with our approach, the first step does not alter the size of the goodness-of-fit test under
regularity conditions on the contaminant distribution. Furthermore, we have provided evidence that our method has good
power properties under different alternatives, including the heavy-tailed multivariate t and a class of skew multivariate
distributions. Finally, we have given further support to our approach by analysing some motivating examples based on real
and simulated data.

From a methodological point of view, our proposal contains two main contributions. The first one is that we develop
a way to take into account the effect of stochastic trimming induced by the outlier removal process. Our consideration of
this effect is twofold. First, we have shown that stochastic trimming is an important ingredient for the purpose of obtaining
a reliable estimate of the number of uncontaminated observations. Then, we have allowed for trimming in the empirical
distribution of the robust distances when performing the goodness-of-fit part of our procedure.

Our second contribution concerns the choice of the error rate to be controlled when removing the outliers. We have
shown that the two conflicting goals of any outlier detection rule, i.e. having high power and low swamping, also affect
the performance of our robust goodness-of-fit technique. With normally distributed uncontaminated observations our
suggestion would be to accept a higher degree of swamping and to trim a larger number of observations, in order to achieve
better separation between the ‘‘good’’ and the ‘‘bad’’ part of the data. On the other hand, when the hypothesis ofmultivariate
normality does not hold, power increaseswith lower levels of trimming. Our conclusion is that control of the False Discovery
Rate in the outlier removal process, as suggested by Cerioli and Farcomeni (2011), can provide a sensible balance between
size and power properties in our robust goodness-of-fit approach.
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