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Abstract. In this paper we propose a new robust technique for the analysis of 
spatial data through simultaneous autoregressive (SAR) models, which extends 
the Forward Search approach of Cerioli and Riani (1999) and Atkinson and Riani 
(2000). Our algorithm starts from a subset of outlier-free observations and then 
selects additional observations according to their degree of agreement with the 
postulated model. A number of useful diagnostics which are monitored along the 
search help to identify masked spatial outliers and high leverage sites. In contrast to 
other robust techniques, our method is particularly suited for the analysis of com- 
plex multidimensional systems since each step is performed through statistically 
and computationally efficient procedures, such as maximum likelihood. The main 
contribution of this paper is the development of joint robust estimation of both 
trend and autocorrelation parameters in spatial linear models. For this purpose we 
suggest a novel definition of the elemental sets of the Forward Search, which relies 
on blocks of contiguous spatial locations. 
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1 Introduction 

The Forward Search (FS, for short) is a newly developed tool for robust regression 
analysis and robust multivariate estimation of location and shape. Its origin stems 
from the work of Hadi (1992), Hadi and Simonoff (1993) and Atkinson (1994) 
although it is only recently that the great potential of monitoring diagnostics along 
the search has been clearly recognized and exploited (Cerioli and Riani, 1999; 
Atkinson and Riani, 2000). The basic ingredients of the FS are a robust start from 
an outlier-free subset of observations, a criterion for progressing in the search, 
which allows the subset to increase by one or more observations at each step, and 
a set of diagnostic tools that are monitored along the search. The robustness of 
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the FS stems from the very definition of its algorithm, starting from "good" data 
points and including outliers only at the end of the procedure. Computation of high- 
breakdown estimators is not required, except possibly at the starting stage. Indeed, 
the application of efficient likelihood or moment-based methods at subsequent 
steps of the FS provides the analyst with more powerful tools than those obtained 
via traditional high-breakdown estimation (e.g. Rousseeuw, 1984; Rousseeuw and 
van Zomeren, 1990). In addition, it has been shown in many examples that the 
robustness properties of the FS can be preserved even if the algorithm is initialized 
from a contaminated subset, thanks to its ability to identify outliers at the outset 
and replace them with "good" observations (Atldnson et al., 2003). 

The flexibility of the FS makes this procedure suitable for extensions to research 
areas other than multiple regression and multivariate estimation. This is especially 
true in the study of complex multidimensional systems, where high-breakdown 
estimators are often difficult to find and unacceptably inefficient. Spatial data anal- 
ysis is one such field, due to the difficulties raised by having a vector-valued index 
attached to each observation, by typical clustering of high and low values within 
the study region, and by the need of jointly estimating variable relationships and 
spatial autocorrelation. 

In a recent article (Cerioli and Riani, 1999) addressed the problem of outlier 
detection through the FS in the kriging model of geostatistics (Cressie, 1993), 
where observations are conceived as a partial realization of a continuous-index 
spatial stochastic process. In kriging it is also possible to compute a robust measure 
of the spatial dependence structure (i.e. the variogram) based on all the data, which 
is and advantage for the FS. The FS for kriging of Cerioli and Riani (1999) was 
run conditionally on this robust variogram estimate. 

In the present paper we focus on a class of popular spatial autoregressive models, 
namely the class of Simultaneous Autoregressive models (SAR, for short), which 
has been widely adopted for the analysis of lattice data in the last 25 years. Fitting a 
SAR model sets new and intriguing problems which can not be answered by the FS 
approach of Cerioli and Riani (1999). The crucial distinction between application of 
the FS to kriging and to spatial autoregression is that, under the SAR model, a robust 
estimator of spatial autoregression parameters based on all the data does not exist. 
Hence, in the FS that we consider in this paper, spatial autoregression parameters 
must be estimated consistently and efficiently at each step of the algorithm, together 
with trend parameters. This makes the FS algorithm for SAR models considerably 
more complex than the one suggested for kriging. 

To define an appropriate FS approach for the SAR model, we argue that the basic 
algorithm for regression models with independent errors (Atldnson and Riani, 2000) 
must be suitably modified and run over blocks of contiguous spatial locations. We 
call the resulting algorithm the Block Forward Search (BFS, for short). The proposal 
of a BFS algorithm for SAR models is the main contribution of this paper. 

Blocks in the BFS algorithm are defined so as to retain the same dependence 
structure as the original data set. Hence an analogy might be drawn between the 
BFS approach of this paper and subsampling techniques for spatially dependent 
observations (Sherman, 1996; Politis et al., 1999; Heagerty and Lumley, 2000), 
which also use blocks of contiguous locations to obtain replicates of the statistics 
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of interest. However, the final decision about the actual block size and the degree of 
overlapping between different blocks might vary according to the specific goal of 
the analysis. In the BFS algorithm, where robust estimation is the main purpose, a 
larger number of relatively small (nonoverlapping) blocks is likely to be preferred, 
as this choice enhances the finite sample effectiveness of the method. 

The potential of our robust technique for the analysis of spatial data is shown 
through application to both simulated and real data sets, reproducing a number of 
situations of practical interest. In particular, we address two important issues, the 
detection of multiple spatial outliers and the detection of high leverage locations. 
In both cases we show that our approach clearly outperforms standard statistical 
diagnostic techniques, which are affected by masking and swamping problems. 
We also analyse the wheat-yield data set of Mercer and Hall (see Cressie, 1993, 
p. 455), which has been studied widely in the spatial statistical literature. In this 
real data example we are thus able to compare our findings with results obtained 
through different methods, and see that spurious information is not introduced in 
the absence of multiple spatial outliers. In all cases we show that the BFS algorithm 
provides plenty of information, being supplemented by many clear and effective 
graphical displays. 

The outline of the paper is as follows. In Sect. 2 we briefly introduce the SAR 
model and we describe some simple diagnostics that are commonly computed to 
identify spatial outliers and influential observations. We also display the effect of 
masking on these diagnostics through some simulated examples. The BFS algorithm 
for spatial autoregression is proposed in Sect. 3. Section 4 shows the practical 
advantages of the application of the BFS algorithm to the simulated examples and 
to the Mercer and Hall wheat-yield data set. Concluding remarks and directions for 
future research are provided in Sect. 5. 

All the data sets analysed in this paper are available at the web page 
http://www.riani.it/jiss02. 

2 Spatial autoregression 

2.1 The SAR model 

Let S = {s 1 , . - . ,  8n } be a collection of n spatial sites and Y / =  Y (si) be a random 
variable observed at site s/, i -= 1 , . . . ,  n. In practice, S may denote either a set of 
administrative units (i.e. counties, municipalities, etc.) or the tiles of a regular grid. 
Spatial relationships between pairs of locations are represented through the simple 
weighting scheme: 

Wij  = 1 

Wi j  -~ 0 

if sites si and sj  are neighbours, 

otherwise, 

and wii = 0. For a regular grid the most common definition of a neighbourhood 
structure is that for which wij = 1 if sj is immediately to the north, south, east or 
west of si. More complex structures are possible in principle, but for simplicity we 
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restrict ourselves to the binary symmetric scheme given above. Furthermore, we 
write y -- [Y1, �9 �9 �9 Y,~]' and W = [wij] for i, j = 1 , . . . ,  n. 

Edge points typically raise problems in the statistical analysis of spatial systems. 
The basic difficulty is that they have fewer neighbours than interior points. For 
instance, even a simple autoregressive model such as (1) below with p = 1 is not 
second-order stationary on a finite region without edge corrections (Haining, 1990, 
p. 82). For this reason we assume that, whenever possible, W has been suitably 
modified to account for edge effects. 

In this paper we explore two simple but widely adopted techniques of edge 
correction. The first one is toroidal correction (Ripley, 1981, p. 152), which wraps a 
rectangular region onto a toms. Edge points on opposite borders are thus considered 
to be close, and all sites have the same number of neighbours. In the second instance 
we apply the asymmetric Neumann correction (Moura and Balram, 1992, p. 338), 
where the off-region neighbours of a boundary site have the same response value as 
the site itself. The asymmetric Neumann correction is likely to be preferred in the 
case of non-lattice data, when the assumption of a toroidal boundary is often not very 
realistic and may be difficult to implement. We have also tried a modified version 
of the asymmetric Neumann correction, which might be called "mirror correction", 
where the off-region neighbours of a boundary site have the same response value 
as the in-region neighbours of the site. In our applications, however, results from 
the mirror correction are usually very similar to those obtained under the standard 
Neumann boundary assumption, and hence will not be reported in detail. 

At each location we might have additional (non stochastic) information related 
to the values of p - 1 spatial covariates. Let X denote the corresponding design 
matrix of dimension n x p, allowing also for the mean effect. We consider the 
simultaneous representation of spatial autoregressive models (SAR): 

( y  - -  X / 3 )  ~- ( I  n - -  / g W ) - - I E ,  (1) 

where/3 = [/30,...,/3p-1]' is a p-dimensional parameter vector, In is the n x n 
identity matrix, p is a measure of spatial interaction between neighbouring sites, and 
e = [ e l , . . . ,  e,~]' is an n-dimensional vector of disturbances. Errors ei are defined 
to be independent and normally distributed with mean 0 and common variance cr 2. 
For (1) to be meaningful, it is assumed that (In - p W )  -1 exists. 

Estimation of parameters in (1) follows by maximization of the likelihood func- 
tion 

1(/3, a 2, p) (2rra2)-'~/2 [I,~ 1 = - p W l e x p { - ~ a 2  (y - X/3)'IE(y - X/3)}, (2) 

where 

= (I~ - p W ) ' ( I ~  - pW) ,  

with respect to/3, a 2 and p. This is usually performed in stages, as for a given p 
the maximum likelihood estimates of/3 and a 2 are the generalized least squares 
estimates 

= r , y  
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and 

3 2 = n - l ( y  - X~) '~J (y  - Xfl). 

Given/~ and 3 2, the maximum likelihood estimate of p, say P, is then obtained 
by numerical optimization of the profile likelihood derived from (2), subject to the 
constraint that 

l~ = (In - p~W)'(In - p-'-~V) 

is positive definite. The values of/~, 32 and ~ can be easily computed through 
specialized software, such as module SpatialStats of S-plus (Mathsoft, 1996). 

In the last two decades the SAR model has been adopted to represent spatial 
variation in a wide variety of fields. See e.g. Haining (1990); Pace et al. (1998); 
Griffith and Lane (1999) and Nair et al. (2000) for a number of interesting ap- 
plications in agriculture, epidemiology, econometrics, socioeconomic analysis and 
integrated-circuit fabrication. 

2.2 Spatial outliers 

A spatial outlier is defined as an observation which is unusual with respect to 
its neighbouring values (Haining, 1990, p. 214). In the context of the SAR model 
described above, a common way to assess spatial outlyingness is to compute indi- 
vidual departures from the fitted model. This is accomplished through the vector 
of standardized residuals 

e = ~ - 1 ( I  n - p~l~r) (y _ X~) ,  (3) 

which defines the lack of fit statistic e 'e .  For instance, in Mathsoft (1996, p. 150) it 
is argued that a plot of standardized residuals against fitted values should provide 
a valuable check for homogeneity and outliers. 

Other definitions of residuals can be useful with correlated data (see e.g., Mar- 
tin, 1992; Haslett and Hayes, 1998 and Baade and Pettitt, 2000), although our 
experience with the FS has shown that alternative choices usually provide similar 
guidance in practice. We prefer standardized over raw residuals as they allow for 
spatial autocorrelation, which we believe is a sensible property for the purpose 
of detecting spatial outliers. Furthermore, as in the familiar case of independent 
observations, the global lack of fit statistic ePe can be decomposed into a sum of 
individual contributions (i.e. the standardised residuals) which can be identified 
with the elements of y. 

A major drawback of standard diagnostic tools is that they are prone to masking 
and swamping when multiple spatial outliers are present in the data. To show this, 
we simulated a data set where S is a 12 x 12 regular grid. Vector y was generated 
according to a SAR model with p = 4, p = 0.2 and tr 2 = 0.5. Simulation of 
( I n -  p W ) -  1 e was performed after generation of a normally distributed disturbance 
vector e and addition of the constant value 20. X was also obtained by simulation 
from a multivariate Normal distribution. The observed y was then derived from 
equation (1) with fl = [20, 5, 4, 3] p. 
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Fig. 1. Simulated example with multiple spatial outliers. Six-panel rotation plot of the data 

Response values Yi were then modified at a 4 x 4 block of sites at the crossings of 
rows 1 , . . . ,  4 and columns 1 , . . . ,  4, plus an additional location (s49, corresponding 
to the first observation in row 5) on its border. Since contamination was performed 
after simulation of y, we can think of the 17 modified values as a cluster of additive 
spatial outliers. Contamination was not very marked in this example, as it simply 
amounted to subtracting small constants (ranging from 0.05 to 2.2) from the original 
readings. Visual inspection of the data from different perspectives (see Fig. 1) does 
not provide evidence of contamination. 

Figure 2 shows the boxplot and an histogram of standardized residuals (3) for 
this simulated data set with multiple spatial outliers. Masking clearly affects both 
diagnostic plots and does not allow proper understanding of the features of the 
data. Indeed, all contaminated values come undetected and only a natural spatial 
outlier at site s36 is highlighted due to its low standardized residual. The unsatisfac- 
tory behaviour of standardized residuals reflects the poor breakdown properties of 
standard maximum likelihood estimators. An additional problem comes from the 
fact that the unknown autocorrelation parameter p has been replaced by its sample 
non-robust estimate ~in  the computation of e. 

Residuals from high-breakdown estimation provide an alternative way to dis- 
close masked features of the data (Rousseeuw and van Zomeren, 1990), although 
at the cost of reduced efficiency and increased computing time. Indeed, if p were 
known, estimation of/3 could follow from standard robust regression analysis. 
Haining (1990, pp. 384-385) also considered a robust estimator of p based on or- 
dinary least squares. However, this approach is not to be recommended due to the 
inconsistency of the least squares method under model (1). To our knowledge the 
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Fig. 2. Simulated example with multiple spatial outliers. Boxplot and histogram of standardized residuals 

problem of finding a joint robust estimate of p and/3 has never found a satisfac- 
tory solution in practice. The BFS algorithm to be proposed in Sect. 3 specifically 
addresses this issue. 

2.3 High leverage sites 

Cases for which the regressor values are far from the bulk of the data in the space 
spanned by the columns of X are usually called high leverage points. Detection of 
such points is an important step of the model building procedure, because they may 
exert an undue influence on the computed fit. The effect of a high leverage point 
is to force the fitted model close to the observed value of the response variable. 
Hence, high leverage points typically have small residuals, even in the absence of 
masking. 

A popular way of measuring individual leverages in standard multiple regression 
is through the diagonal elements of the hat matrix X ( X ' X ) - I X  '. Martin (1992) 
showed how these diagnostics can be extended to cope with dependent observations 
in the SAR model (1). Specifically, when ~ 7~ In, individual leverages can be 
computed as the diagonal elements of 

P = ~ X ( X ' ~ X ) - I X ' E .  (4) 

Also the diagonal elements of 

Q = E - P ,  (5) 

which are called complementary leverages, can be useful in this context. 
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Unfortunately, such diagnostics are also prone to masking and swamping ef- 
fects when multiple high-leverage points are present in the data. To show this, we 
introduce a new simulated data set, similar to the one analysed in Sect. 2.2. Here S 
corresponds to the tiles of  a 20 x 20 regular grid, and y was simulated according to 
model (1) w i thp  = 4,/3 = [20, 5, 4, 3]' as before, p = 0.1 and cr 2 = 1. X was also 
obtained by simulation from a multivariate Normal distribution, but the covariate 
values at sites s2, sa and s24 (in lexicographical order) were now slightly modified 
in order to increase their leverages. 

Figure 3 displays the boxplot and an histogram of the complementary leverages 
computed from (5) for this data set. Even though the contamination rate is very low 
(less than 1%), the effects of  masking and swamping are clearly apparent, as one 
sees a plethora of  potentially suspect influential observations. In this situation it is 
difficult to tell what a sensible conclusion would be. 

Furthermore, the definition of leverage diagnostics (4) and (5) implies knowl- 
edge ofp.  We have thus to face again the consequences of  substituting the non-robust 
estimate ~ for the unknown autocorrelation parameter. 

Fig. 3. Simulated example with high leverage points. Boxplot and histogram of complementary leverages 

3 The block forward search for spatial autoregression 

If  a simple consistent and efficient estimator of  p were known, e.g. a least squares 
estimator, then it would be possible to compute a robust version of it based on 
all the data and run a forward search similar to that of  Cerioli and Riani (1999). 
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Unfortunately this solution is not feasible under model (1), since the ordinary least 
squares estimator of p is not consistent (e.g., Cressie, 1993, p. 407) and generalized 
least squares estimation requires knowledge of the value of p itself. 

We circumvent the difficulty by suggesting a FS algorithm where p is estimated 
jointly with/3 at each step of the search. For this purpose, we pick up n* < n blocks 
of contiguous spatial locations within S, and consider these blocks as the basic 
elemental sets of our algorithm. Blocks are intended to retain the spatial dependence 
properties of the whole study region. Hence, they are defined to resemble as closely 
as possible the shape of S. Confining attention to subsets of neighbouring locations 
ensures that spatial relationships are preserved by the BFS algorithm, so that p can 
be estimated within each block. 

In each step of our algorithm parameter estimation is performed through max- 
imum likelihood or a simple approximation to it. Therefore, we are ensured that 
the estimator of p is consistent at each step of the search, until outliers enter into 
the fitting subset. Furthermore, for a given p, maximum likelihood provides a more 
efficient way of estimating/3 than high-breakdown fitting techniques such as least 
median of squares. 

Let A be a collection of sites si E S. Define SA to be the subset of S indexed 
by locations in A and denote by a the cardinality of SA. Similarly, take YA, XA, 
WA and ~-']a to be the blocks of y, X, W and ~ corresponding to locations in SA. 
We suppose that also WA is corrected for edge effects through one of the methods 
described in Sect. 2.1. This adjustment might be particularly important when a is 
small. 

The exact likelihood function based only on observations in S A  is described in 
Martin (1984) and is given by 

1A(/3, ~r 2, p) = (27rcr2)-a/21(~-1)Al-1/2 

exp [--1-1-~-ff(ya-- Xa/3)t{(Yl-1)a}-a(yA-- Xa/3) 1 . (6) 

In this paper we often work with the simpler approximation 

l~(/3, c 2, p) = (27raZ)-a/ZlIa - pWA[ {1 / 
exp - ~ (YA - -  XAfl)t~']A(YA - -  X A f l )  , (7) 

which is defined in terms of ][]A instead of {(Y]-I )A}-I .  
Of course, both (6) and (7) correspond to the full likelihood function l(/3, cr 2, p) 

if A -- S. If A C S, l~ (/3, ~r 2, p) yields an approximation which can be evaluated 
much more quickly than its exact counterpart. Hence, it is particularly appealing 
for repeated optimization at subsquent steps of the BFS algorithm. In what follows 

A 

we denote by/3A, ~ and PA the maximizers of either the exact likelihood (6) or 
its approximation (7), depending on the context. 

The main steps of our BFS algorithm for model (1) are summarized as follows. 
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3.1 Defining the blocks 

To initialize the FS, we start from a subset of observations which is intended to 
be outlier free. The initial subset is selected among n* blocks Bj,  j = 1 , . . . ,  n*, 
of contiguous spatial locations, each of cardinality bj. Such blocks are defined to 
retain as close as possible the same shape as S. For instance, when S is a regular 
square lattice each Bj is simply a square of bj -= ev/'n x Cv/-n contiguous tiles of 
S, for c < 1 a fixed constant. 

In the general situation where S does not have a regular shape, blocks can be 
obtained as follows. Write si for the two-dimensional vector of spatial coordinates 
corresponding to site s~, i = 1 , . . . ,  n. For instance, in the case of an administrative 
unit vector si may be obtained by simply taking its centroid coordinates. Define 
S* = { s l , . . . ,  s~} and D(u) - (0,/]1] • (0, /22], where u =//'1 • /]2 is selected in 
such a way that S* c_ O(/]). Choose a pair of subshape sizes, say r and 0(/]l)- 
Subshapes of S* are obtained by dividing the set D(L,) into possibly overlapping 
rectangles each of dimension qS(ul) • ~b(u2). Then define block B1 as the subset of 
spatial locations whose coordinate vector si lies within the rectangle (0, r • 
(0, r Subsequent blocks are defined in a similar way by simply translating the 
origin of each rectangle. Since there are only data in S*, we only use the rectangles 
that provide a non-empty intersection with S*. Finally, the neighbourhood structure 
of block Bj, j = 1 , . . . ,  n*, is given by WB~. 

We suggest to select the subshape sizes r  and 0(u2) in such a way that 
each bj = O(nl/2), to ensure a balance between the statistical properties of PBj 
and the robustness of the method. However, since robustness is our main focus the 
proportionality constants are likely to be smaller than in other inferential problems 
for autocorrelated variables where blocks are adopted (e.g. Heagerty and Lumley, 
2000; Cerioli, 2002). In fact, blocks are the actual elemental sets of our algorithm 
and n* must be large enough to ensure that there is at least a block without contam- 
inated units. We also avoid the use of overlapping blocks of locations, as this would 
destroy the diagnostic power of (partially) ordering spatial locations through the 
BFS algorithm (see Sect. 3.5 below). Some numerical results showing the effect of 
different choices of 0(/]1) and r will be given in Sect. 4. 

For simplicity, in what follows we restrict our description of the BFS algorithm 
to the situation where S is a regular lattice and bj = b for j = 1 , . . . ,  n*. This is 
also the setting of our examples in Sect. 4.2. 

3.2 Choice of the initial subset 

To find the starting subset of the BFS algorthm, we perform an exhaustive search 
of all possible blocks Bj,  j -- 1 , . . . ,  n*, and choose the one which satisfies a least 
median of squares criterion. Specifically, let 

be the n • i vector of standardized residuals computed from the fit to observations in 
Bj. This fit can be obtained by maximization of either the exact likelihood function 
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(6) or its approximate version (7), with A = Bj. Write e ~  for the corresponding 
vector of squared standardized residuals. We select as our initial subset the block, 
say B. ,  minimizing the function 

med(e~)Bj)~ (8) 

where reed(.) stands for the median of the ordered elements of a vector. 
Criterion (8) is similar to the least median of squares method for regression 

models with independent errors (Rousseeuw, 1984), except that here standardized 
instead of raw residuals are considered. It should be emphasized that this is the only 
one step of our algorithm where a high-breakdown criterion is applied. Computation 
of residuals from a robust fit prevents clusters of spatial outliers from being included 
in the initial subset. Nevertheless, our experience has shown that this requirement 
is often less important than expected, since the FS may be able to identify outliers 
at the outset and replace them with "good" observations. 

3.3 Progressing in the search 

The basic idea of the FS approach is to fit repeatedly the postulated model to 
subsets of observations of increasing size, selected in such a way that outliers are 
included only at the end of the procedure. For this purpose, let m be the number 
of spatial locations used for fitting model (1) at a step of the BFS. Denote by S(m) 
the corresponding subset of S. At the first step we take m ---- b and 

S ( m  ) = B , .  

The likelihood at each step is derived from (6) or from its approximation (7) with 
2 A = S(m). This yields estimates ~(~), ~(m) and ~(m). 

S(m) is then updated to S(m+k(~)) by taking the subset of m + k(~) spatial 
locations with the smallest absolute standardized residuals in 

~ m  1 (In - p ( m ) W ) ( y -  X~(~)),  e(m) = ( ) (9) 

excluding those already in the initial subset. In this search all units but those forming 
B .  can thus leave the subset. Of course, 1 _< k(m) _< b. For m > b we take either 
k(m) = b or k(m) = 1. In the examples of Sect. 4 both choices give similar 
results, although the former is often to be preferred as it provides smoother residual 
trajectories and estimates of p. 

We have also implemented an alternative updating scheme where sites from 
B.  can be removed from the fitting subset at subsequent steps of the search, a 
property which was found useful in several applications of the FS run over individual 
observations (Cerioli and Riani, 1999; Atldnson and Riani, 2000). However, its 
interpretation might be less intuitive for the BFS described here, since blocks and 
not individual locations are now the elemental sets. Detailed investigation of this 
alternative updating scheme will be pursued elsewhere. 
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3.4 Computing the BFS estimator and relevant diagnostics 

The BFS estimator of  the multidimensional parameter 0 = [/3 ~, a 2 , p]~ is defined as 
the sequence of its (approximate) maximum likelihood estimators 

0"(m) ~l  ~2  ~ i = �9 

That is, 

= . . ,  . . . ,  

In addition, a number of  diagnostic measures are computed along the BFS. These 
include standardized residuals (9) for all units, and estimated leverage measures on 
the diagonal of 

Ps(. , )  = S(~)Xs(m)(Xs(,.)ES(~)Xs(m)J S(.~) S(~) 

and 

for the sites belonging to S(m). In both (10) and (11) 

ffs(,~) = ( I~  - p ~ ) W s o ~  )) '(Ira - ~(m)Wso~)).  

(lO) 

(11) 

At each step we also compute the signed square-root likelihood ratio statistic which 
tests the null hypothesis H0 : p = Po, for a number of plausible null values P0. For 
instance, consider the approximate likelihood (7) and let/3(m)0 and 82 be the (m)o 
corresponding estimates of/3 and a 2 computed with A = S(m) and p = Po. The 
test statistic is then defined as 

* ~ A 2  A 

A(m) & [21og{/s(m)(/3(m),a(m),~fi(m))} - 21og{/~(m)(]~(m)O,~m)O, flO)}] 1/2 

_ _ 8 - 2  r ~ ^ = + {loglEs(m,~sL)0l l ~  (m) S(m)~S(m)rs(m) 

~ _  �9 1/2 
+ ~(~)or~(~)o~s~)ors~m)o~,.o - ~ , (12) 

where the sign is + if P(m) _> Po and - otherwise. In (12), rs(~) = Ys(,~) - 

Xs(,,)/3(,  0 is the m • I ordinary residual vector computed from ~(,~) for the units 

in S(m), r s ~ ) o  = yso~ ) - Xso~ )/3(m)o is the corresponding vector under Ho, and 

~ 8 ( m ) 0  = ( I r a  - -  p 0 W s ( m )  ) '  (Ira - poWs(m) ). 

If Ho is true A(m) behaves approximately as a N(0, 1) random variable. Hence, 
computation of (12) allows some confirmatory statements about the true value of 
p. Furthermore, we might expect that the effect of  the likelihood approximation (7) 
will be smaller on A(m) than on the point estimator P(m). 
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3.5 Diagnostic monitoring and ordering of blocks 

A major advantage of the FS approach is to provide the user with a number of 
informative pictures displaying all the diagnostics computed along the search. 

For instance, the anomalous behaviour of spatial outliers is clearly revealed by 
the individual trajectories in the forward plot of standardized residuals e(m), even 
when standard deletion diagnostics suffer from masking. In a similar fashion, the 
effect of spatial outliers on the estimate of p can be detected through the forward 
plots of P(m) and A(m). 

An additional bonus of the FS algorithm is that it is often possible to rank the 
locations in S following their entrance step into S(m). This gives an ordering of the 
data according to their degree of agreement with the null model (1), with observa- 
tions furthest from it joining S(m) at the last stages of the procedure. However, if 
the BFS is run with k(m) = b the ordering is only partial, since all sites belonging 
to the same block are to be regarded as equivalent. For the same reason, we do not 
support the definition of overlapping blocks of spatial locations, as in this situation 
each site would belong to more than one elemental set and ordering would become 
impossible. 

4 Applications 

4.1 Multiple spatial outliers 

We apply our BFS algorithm to the simulated data set with masked spatial outliers 
described in Sect. 2.2. First, we use toroidal edge corrections and the fast approx- 
imation to the likelihood function given in (7). Figure 4 shows the corresponding 
forward plot of standardized residuals (9) as a function of m. Here the BFS al- 
gorithm is run over non-overlapping square blocks of dimensions 4 • 4 and rule 
k(m) = b is adopted for progressing in the search. 

The trajectories corresponding to the contaminated cluster clearly stand apart 
from the others, as these sites have the largest standardized residuals for most of the 
search. Hence our algorithm is effective in separating outlying locations from the 
rest of S even in a situation where contamination is moderate and comes undete- 
tected by visual inspection or by traditional diagnostic procedures. In addition, the 
effect of masking is apparent toward the end of the algorithm, when all residuals 
have similar magnitude. 

It is interesting to see that in this example masking becomes a problem for 
m < n, as the modified observations are not particularly different from the bulk of 
the data and the contaminated corner joins S(m) at the step prior to the final one. 
Also residuals from a single robust fit of model (1) might fall in detecting all spatial 
outliers, as consideration of the least median of squares residuals from the initial 
subset shows. It is just the trajectory of each residual in the forward plot that allows 
proper understanding of the features of the corresponding location. 

To see how our choices affect the results from the search, we also run the 
BFS algorithm under different settings. Figure 5 provides the forward plot of stan- 
dardized residuals computed from the approximate likelihood function (7) and the 
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Subset size rn 

Fig. 4. Simulated example with multiple spatial outliers. Trajectories of standardized residuals for 
individual locations and b = 16. Curves corresponding to contaminated sites are given in black. Toroidal 
edge corrections and approximate maximum likelihood 

asymmetric Neumann edge-correction method introduced in Sect. 2.1. In addition, 
Fig. 6 is the same plot obtained through the exact likelihood (6) with toroidal edge 
corrections. In both cases b = 16 as before. It is reassuring to see that the main 
findings provided by the BFS are the same in all instances, with the contaminated 
corner clearly standing apart from the remaining trajectories. It is also worth noting 
that the approximation involved by function (7) is negligible even if the true p is 
close to its upper limit in this example. 

Also the choice of  a different block size does not appreciably change the results 
from the search. For instance, Fig. 7 displays the forward plot of  standardized 
residuals for b = 3 x 3, toroidal correction and approximate likelihood. Again, 
this plot depicts essentially the same information as before, although there is more 
variability in the first stages of  the search, due to the smaller size of  S(m). The 
effect of  masking also shows up a bit earlier, as spatial outliers are now spread over 
a larger number of  blocks. 

4.2 Multiple spatial outliers and estimation of the autocorrelation parameter 

We introduce a new example where multiple spatial outliers have a disproportionate 
effect on the estimate of  p, not only on the residuals from the fitted model. For 
this purpose, we simulated a data set from model (1) with S a 12 x 12 grid,/3 = 
[20, 5, 4, 3] / as in Sect. 2.2, p = 0.1 and cr 2 = 1. Then we modified Yi at a block of  16 
sites located at the crossings of  rows 1 , . . . ,  4 and columns 1 , . . . ,  4, by subtracting 
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Subset size m 

Fig. 5. Simulated example with multiple spatial outliers. Trajectories of standardized residuals for indi- 
vidual locations and b = 16. Curves corresponding to contaminated sites are given in black. Asymmetric 
Neumann edge corrections and approximate maximum likelihood 

Subset size m 

Fig. 6. Simulated example with multiple spatial outliers. Trajectories of standardized residuals for 
individual locations and b = 16. Curves corresponding to contaminated sites are given in black. Toroidal 
edge corrections and exact maximum likelihood 
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Subset size rn 

Fig. 7. Simulated example with multiple spatial outliers. Trajectories of standardized residuals for 
individual locations and reduced block size (b = 9). Curves corresponding to contaminated sites are 
given in black. Toroidal edge corrections and approximate maximum likelihood 

8 from all of them. Fixed contamination increases the similarity of response values 
in the outlying comer and thus has a larger influence on estimation of p. 

Although in this example contamination on the response variable is marked 
and perhaps it might be detected also by other methods, the BFS still provides 
important additional information through the display of residual trajectories and 
the monitoring of diagnostic quantities. Furthermore, it is the only robust method 
that is able to highlight the inferential effect of each observation on the estimate of 
the spatial autocorrelation parameter of a SAR model. 

The BFS is applied here with b = 4 • 4 and k ( m  ) = b, although similar re- 
suits are obtained with different block sizes. First, we adopt toroidal correction and 
the approximation (7) to the likelihood function of blocks. As in our example of 
Sect. 4.1, contaminated locations clearly stand out in the forward plot of standard- 
ized residuals (Fig. 8). Masking is still present in the final step, when S(,~) = S, 
and particularly so for the observations at sites s14 and s15. 

The left panel of Fig. 9 shows the forward plot of P(m), again as a function of 
m. The right panel gives the forward plot of the signed square-root likelihood ratio 
statistic (12), which tests Ho : p = P0 for a number of values Po > 0, together 
with asymptotic 99% confidence bands. The effect of including the contaminated 
subset is paramount in the final step of both displays, raising the estimate of the 
autocorrelation parameter from ~ = 0.103 based on S(12s) to ~ = 0.223 based on 
all the data. Multiple outliers grossly mislead confirrnative analysis based on the 
likelihood ratio statistic, with the true value p = O. 1 being wrongly rejected only 
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Subset size m 

Fig. 8. Second simulated example with multiple spatial outliers. Trajectories of standardized residuals 
for individual locations. Curves corresponding to contaminated sites are given in black. Toroidal edge 
corrections and approximate maximum likelihood 

after their inclusion. On the other hand, it is seen that the apparently more plausible 
value p = 0.2 lies well outside the 99% confidence bands for most of the search. 

Again, our findings on p are not affected by the specific edge correction method, 
nor by use of the approximate likelihood function (7) instead of its exact counterpart. 
Figure 10 displays the forward plots of p(m) and the signed square-root likelihood 
ratio statistic A(,~) computed under asymmetric Neumann correction and approxi- 
mate likelihood. Similarly, Fig. 11 displays the same graphs for toroidal correction 
and exact likelihood. It is clearly seen that these pictures provide essentially the 
same information as Fig. 9. The only difference is the more accurate estimate of p 
obtained through the exact likelihood function (6) when m ,~ n/2. 

We conclude this example by stressing the value of the BFS algorithm for the 
purpose of detecting the influence of multiple outliers on estimation of p. Further- 
more, outliers enter towards the end of the algorithm in a step that can often be 
easily identified by our diagnostic plots (see the marked elbow in the curve of ~'(,~)). 
Quantities computed before their inclusion can thus be regarded as robust against 
them. 

4.3 High leverage sites 

We now apply the BFS algorithm to the simulated data set with masked high- 
leverage points described in Sect. 2.3. The procedure is run over non-overlapping 
square blocks of dimensions 4 • 4, so that b = n/9. Rule k(m) = 1 is adopted here 
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Fig. 9. Second simulated example with multiple spatial outliers. Estimates of p (left) and signed square- 
root likelihood ratio statistics for testing H0 : p --- P0, for a number of values Po, (right) at each step 
of the BFS. In the right panel the 99% confidence bands are also reported. Toroidal edge corrections 
and approximate maximum likelihood 
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Fig. 10. Second simulated example with multiple spatial outliers. Estimates of p (left) and signed 
square-root likelihood ratio statistics for testing Ho : p = Po (right) at each step of the BFS. Asymmetric 
Neumann edge corrections and approximate maximum likelihood 

for progressing in the search. This choice is motivated by the need to obtain detailed 
information about the behaviour of  individual leverage values with respect to other 
locations within the same block. With large subset sizes, repeated evaluation of the 
exact l ikelihood function (6) becomes computationally demanding. For simplicity, 
we thus restrict ourselves here to the fast approximation given in (7) with toroidal 
edge corrections. 

Figure 12 displays the resulting forward plots of estimated leverages (left) and 
complementary leverages (right), as a function of  the size of  S(m), in the last 20 
steps of  the search. Each site is monitored following its inclusion into S(m). The 
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Subset size m Subset size m 

Fig. 11. Second simulated example with multiple spatial outliers. Estimates of p (left) and signed 
square-root likelihood ratio statistics for testing Ho : p = Po (right) at each step of the BFS. Toroidal 
corrections and exact maximum likelihood 

Subset size m Subset size m 

Fig. 12. Simulated example with high leverage points. Estimated leverages (left) and complementary 
leverages (right) in the last 20 steps of the search. Curves corresponding to contaminated high-leverage 
sites are given in black. Toroidal edge corrections and approximate maximum likelihood 

curves corresponding to the three faked high-leverage points are highlighted in the 
plot; The effect of  masking appears toward the end of  the algorithm, when these 
sites have leverage measures comparable to those of  other locations. 

Masking may be a bit surprising for site s24, which is not a neighbour of  s2 and 
s3 according to our definition of  W .  Nevertheless, monitoring leverage diagnostics 
at subsequent steps of  the BFS clearly shows a different behaviour for all the three 
sites that were contaminated in the space of  explanatory variables. Although both 
panels of  Fig. 12 convey essentially the same information, the picture on the left 
shows smoother trajectories for uncontaminated sites. 
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It is worth noting that the estimated leverage for site s3 is always less extreme 
than the estimated leverage for s16, a natural high-leverage site, and becomes al- 
most unnoticeable in the last few steps of the search. It is thus the shape of the 
corresponding trajectory that clearly leads to proper recognition of the peculiarity 
of this point in the (generalized) space spanned by the columns of Xs(,~. On the 
contrary, the trajectory of s16 is quite similar to that of the bulk of the other lo- 
cations, suggesting that the remoteness of this site in the regressor variable space 
does not depend on the inclusion of the units which enter in the last steps of the 
BFS algorithm. 

4.4 Wheat yield data 

As a final example, we apply the BFS algorithm to a real data set. For this purpose 
we consider the wheat yield originally reported by Mercer and Hall on a rectan- 
gular grid of dimension 20 • 25: see e.g. Cressie (1993, Sect. 7.1) for a detailed 
description of the data. Although there is some evidence that a one-parameter spa- 
tial autocorrelation model such as (1) might not be appropriate in this application, 
the Mercer and Hall data have been widely used for the purpose of describing spa- 
tial a utoregression. This application is thus intended to provide a comparison of 
results from our BFS algorithm with those obtained by more standard techniques. 
Furthermore, Riani and Cerioli (2002) showed through the FS for kriging that the 
wheat-yield data set does not seem to be affected by masking, but only contains 
a few isolated spatial outliers. Hence it is useful to check that the BFS does not 
introduce spurious information with relatively "well behaved" spatial data. 

In this example there are no explanatory variables, so that model (1) is purely 
spatial, p = 1 and the leverage measures discussed in Sects. 2.3 and 4.3 are not 
relevant. 

The BFS is run over non-overlapping rectangular tiles of contiguous spatial 
locations. In what follows we take blocks of dimensions b -- 4 • 5 and update 
S(m) according to rule k(m) -- b. For computational simplicity, we again restrict 
ourselves to the fast approximation to the likelihood function given in (7) with 
toroidal edge corrections. 

Figure 13 shows the forward plot of standardized residuals (9) as a function 
of the size of S(m). Individual trajectories have a regular and homogeneous be- 
haviour, with only three possible outliers. Since these locations are scattered within 
S, there is no masking toward the end of the algorithm. The number of curves in 
the top half-plane of the plot is approximately equal to n/2, so that there is no 
evidence of a spatial trend. The information gained by the BFS algorithm for the 
SAR model is similar to that obtained by Riani and Cerioli (2002) within a geo- 
statistical framework, although a different distance scheme is adopted here and the 
spatial autocorrelation parameter p is estimated at each step of the search. On the 
contrary, exploratory data analysis performed by Cressie (1993) through more clas- 
sical geostatistical methods led to questionable detrending and introduced spurious 
outliers. 

Figure 14 shows the forward plots of ~(m) and A(m), for a number of null values 
Po > 0. From both panels we see the influence of each block of spatial locations 
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Subset size m 

Fig. 13. Wheat yield data. Trajectories of standardized residuals for individual locations. Toroidal edge 
corrections and approximate maximum likelihood 
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Fig. 14. Wheat yield data. Estimates of p (left) and signed square-root likelihood ratio statistics for 
testing Ho : p = Po, together with 99% confidence bands, (right) at each step of the BFS. Toroidal 
edge corrections and approximate maximum likelihood 

on est imation of  p. The final est imate ~(,~) ---- 0.16 corresponds to that obtained 
through the standard non-robust  fitting technique. As the search stabilizes, values 
of  p be longing  to the interval (0.15, 0.175) become increasingly plausible.  Hence  
in this application the blocks that are inc luded in the last steps of  the search have 

only  a minor  effect on the est imated autocorrelat ion parameter. This  is a sensible 
behaviour  in the absence of  clusters of  masked spatial outliers. 
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5 Final remarks 

In this paper we have shown how the Forward Search algorithm for regression mod- 
els with independent errors (Atkinson and Riani, 2000) can be extended to spatial 
autoregressive models with simultaneous specification. The main contribution of 
our approach is that it allows joint robust estimation of both trend and autocorre- 
lation parameters. This result follows from a novel definition of the elemental sets 
of the Forward Search, which is run over blocks of contiguous spatial locations. 

We have shown through a number of examples that our algorithm is a valuable 
tool for the purpose of detecting multiple outliers and high leverage points which 
would be masked by standard diagnostic methods. This is achieved through joint 
consideration of a number of revealing plots. In contrast to other robust fitting 
techniques, which are not easily extended to spatial models, it has the additional 
advantage of relying on efficient and easy-to-implement estimation schemes, such 
as maximum likelihood. Furthermore, it fulfills the difficult task of providing some 
useful robust diagnostics for the estimated autocorrelation parameter that would 
not be available otherwise. We have also seen that this power is not diminished 
by adopting a fast approximation to the likelihood function of each block, nor by 
choosing a number of alternative options in the edge correction procedure and in 
the search algorithm. 

However, we have not answered all relevant questions. An important extension 
of our BFS algorithm is to the fitting of SAR models with directional and/or second- 
order effects, as well as to the conditional autoregressive (CAR) model 

(y - X~)  = (In - pW)-I/2e. (13) 

Indeed, in the case of a CAR model an interesting research problem arises. On the 
one hand, the BFS algorithm could be simply modified by taking the likelihood 
function for a CAR model 

1CAR(r, 0 "2, p) = (27rcr2)-n/2[~ll/2ex p t-- 91--~ (y -- X/3) '~ (y  - X/3 )} ,  

(14) 
where 

~. = In - p W  

with W symmetric, as required by the CAR assumption. The estimates fl(m), 32 (m) 
and ~(m) computed at subsequent steps of the search could then be obtained from 
the CAR likelihood (14) based only on observations in S(m). 

On the other hand, ordinary least squares yields a consistent estimate of p under 
model (13). Hence it is possible, in principle at least, to compute a robust estimate of 
the spatial autocorrelation parameter based on all the data and run a FS conditional 
on it, as we did for kriging (Cerioli and Riani, 1999). CAR models will thus provide 
the ideal ground where the results from the BFS approach of this paper and those 
from the conditional FS for kriging can be compared in terms of their statistical 
and practical efficiency. 

Robust estimation of the Box-Cox transformation parameter within the frame- 
work of model (1) is an additional point which seems a particularly promising 
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consequence of the forward approach of this paper (Riani and Atkinson, 2000). 
Indeed, for the purpose of finding an adequate data transformation, either ignoring 
the effect of spatial autocorrelation or trying to eliminate it have been customary 
practices in the past (e.g. Haining, 1990, p. 227). Our BFS algorithm, on the con- 
trary, has the great potential of allowing joint (maximum likelihood) estimation 
of both autocorrelation and transformation parameters. How to solve this and the 
other aforementioned problems is currently under investigation. 
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