. Size and Power of Multivariate Qutlier
. Detection Rules

Andrea Cerioli, Marco Riani, and Francesca Torti

Abstract Multivariate outliers are usually identified by means of robust distances.
A statistically principled method for accurate outlier detection requires both avail-
ability of a good approximation to the finite-sample distribution of the robust
distances and correction for the multiplicity implied by repeated testing of all the
observations for outlyingness. These principles are not always met by the currently
available methods. The goal of this paper is thus to provide data analysts with useful
inforfiation about the practical behaviour of some popular competing techniques. i
Our conclusion is that the additional information provided by a data-driven level of
trimming is an important bonus which ensures an often considerable gain in power.

1 Introduction

Obtaining reliable information on the quality of the available data is often the first
of Fk_xe challenges facing the statistician. 1t is thus not surprising that the systematic
stady of methods for detecting outliers and immunizing against their effect has a
_'10'n'g history in the statistical literature. See, ¢.g., Cerioli ef al. (2011a), Hadi et al.
009), Hubert et al, (2008) and Morgenthaler (2006) for recent reviews on this
We quote from Morgenthaier (2006, p. 271) that “Robustness of statistical
ods in the sense of insensitivity to grossly wrong measurements is probably
old as the experimental approach to science”. Perhaps less known ig the fact that
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similar concerns were also bresentin the Ancient Greece more than 2,400 years a
as reported by Thucydides in his History of The Peloponnesian War (I 20): “T3¢
the Peloponnesians and Boeotians, ... mad:
f the enemy’s wall, which they calculated
the help of the layers of bricks on the side facing the town ... A greal many counteg

at once, and, altheugh some might make mistakes, the calculation would be oftener
right than wrong: for they repeated the process again and again ... In this manner
they ascertained the proper length of the Iadders”.!

With multivariate data outliers are usually identified by means of robygst dis-

tances. A statistically principled rule for accurate multivariate outlier detection
requires: '

{a) An accurate approximation to the finite-
distances under the postulated model for th

(b) Correction for the multiplicity implied by
tions for outlyingness.

sample distribution of the tobust
e “good” part of the data;
repeated testing of all the obserya-

These principles are not always met b
goal of this paper is to provide data an
practical behaviour of popular competin
on alternative high-breakdown estimato,

y the currently available methods, The
alysts with useful information about the
g techniques. We focus on methods based
rs of multivariate location and scatter, and

adopting a more flexible level of trimming,
for different data dimensions, The present thus extends that of (Cerioli et al,
2011b), where only low dimensional data are considered, Our conclusion is
the additional information provided by a data-

driven approach to temming is an
Important bonus often ensuring a considerable gain in power. This gain may be
even larger when the number of variables increases,

2 Distances for Multivariate Qutlier Detection

that

2.1 Mahalanobis Distances and the Wilky’ Rule

-+, Yu be a sample of v-dimensionai observations from a population with
mean vector 44 and covariance matrix X. The basic population model for which
most of the results described in this paper were obtained is that

J’r"-’N(/-L,E) izl,...,n.
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The sample mean is denoted by /i and 3 is the unbiased sample estimate of X The
Mahalanobis distance of observation y; is

d? = (yi — Y27 3 — ). 2)

For simplicity, we omit the fact that 7 is squared and we call it a distance.
Wilks (1963) showed in a seminal paper that, under the multivariate normal
model (1), the Mahalanobis distances follow a scaled Beta distribution:

— 12 e Y
dfﬁ,ugm(z,w) P=1..n 3
n 2 2

Wilks also conjectured that a Bonferroni bound could be used to test outlyingness
of the most remote observation without losing too much power, Therefore, for a
nominal test size ¢, Wilk’s rule for multivariate outlier identification takes the
largest Mahalanobis distance among d?, ...,d?, and compares it to the 1 — a/n

n?
quantile of the scaled Beta distribution (3). This gives an outlier test of nominal test

- size < g

~ Wilks’ rule, adhering to the basic statistical principles (a) and (b) of Sect. 1,
provides an accurate and powerful test for detecting a single outlier even in small
and moderate samples, as many simulation studies later confirmed. However, it can
break down very easily in presence of more than one outlier, due to the effect of
masking, Masking occurs when a group of extreme outliers modifies i and Yin
such a way that the corresponding distances become negligible,

2.2 Robust Distances

One effective way to avoid masking is to replace /i and £ in (2) with high-
breal;down estimators. A robust distance is then defined as

df = (v — Y £y — o). @

Ere.];n and % denote the chosen robust estimators of location and scatter, We can
. ‘Pﬂc.t_multwanate outliers to be highlighted by large values of d ,-2, even if masked in

eSI;Pnding Mahalanobis distances (2), because now fi and X are not affected
tliers.

CD) criterion (Rousseeuw and Van Driessen 1999). In the first stage,
erage Ln/ 2| = h < n and we define the MCD subset to be the sub-
Ybservations whose covariance matrix has the smallest determinant.
timator of 1, say finvcpy, is the average of the MCD subset, whereas
S.El__m_gifor of X, say Zvepy, is proportional to the dispersion matrix of this




subset (Pison et al. 2002}, A second stage is then added with the aim of increasip
efficiency, while preserving the high-breakdown properties of Mooy and ):T(MCG
Therefore, a one-step reweighting scheme is applied by giving weight w; = (
observations whose first-stage robust distance exceeds a threshold value, Otherwi

the weight is w; = 1. We consider the Reweighted MCD (RMCD) estimator of W
and X, which is defined as

2oim1 Widi Sranicn = & Yo wi(vi ~ frmeoy) (7 — frmen)’

w w—1

Ia'RMCD =

where w = % w; and the scaling «, depending on the values of m, n and v,
serves the purpose of ensuring consistency at the normal model. The resultin g robust
distances for multivariate outlier detection are then

‘ZEZ(RMCD) = (¥ — fiamen) Eiyien (¥ — frven) P=1,...,n

3)

Multivariate S estimators are another common option for ji and X. For 1 € it¥
and 2 a positive definite symmetric v x v matrix, they are defined to be the solution
of the minimization problem | ¥'| = min under the constraint

1 N .
~) P =¢,

i=1

(6)

where ci’.vf is given in (4), p(x) is a smooth function satisfying suitable régularity and
robustness properties, and { = E{p(z'z)} for a v-dimensional vector z ~ N(0, I).
The p function in (6) rules the weight given to each observation. to achieve
robustness. Different specifications of p(x) lead to numerically and statistically
different S estimators. In this paper we deal with two such specifications. The first
one is the popular Tukey’s Biweight function '

(N

A
plxy =45
©

where ¢ > 0 is a tuning constant which controls the breakdown point of S
estimators; see Roussecuw and Leroy (1987, pp.135-143) and Rianij et al. (2012) !
for details, The second alternative that we consider is the slightly more complex ©
Rocke’s Biflat function, described, e.g., by Maronna et al. (2006, p. 190). This
function assigns weights similar to (7) to distance values close to the median, but
null weights outside a user-defined interval. Specifically, let

2
7 = min (—X“‘“‘” -1, 1) :
v

&)
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where 7,y is the T —y quantile of x2. Then, the weight under Rocke’s Biflat

function is 0 whenever a normalized version of the robust distance cfiz is outside the
interval [1 — 77, 1 4+ 7). This definition ensures better performance of S estimators
when v is large. Indeed, it can be proved (Maronna et al. 20006, p. 221) that the
weights assigned by Tukey’s Biweight function (7) become almost constant as
v — 00, Therefore, robustness of multivariate S estimators ts lost in many practical
situations where v is large. Examples of this behaviour will be seen in Sect. 3.2 even
for v as small as 10,

Given the robust, but petentially inefficient, S estimators of y and X, an
improvement in efficiency is sometimes advocated by computing refined location
and shape estimators which satisfy a more efficient version of (6) (Salibian-Barrera
et al, 2006). These estimators, calied MM estimators, are defined as the minimizers

of
1 it :2
n Z psdi ),

i=l

&)

where - -

df = i = &7 i~ ) (10)
anid the function p.(x) provides higher efficiency than p(x) at the null model (1).
Minimization of (9) is performed over all oen and all Z:‘ belonging to the set
“ofvpositive definite symmetric v x v matrices with | ¥} = 1. The MM estimator

of 1 is then fi, while the estimator of X is a rescaled version of £, Practical
implementation of MM estimators is available using Tukey’s Biweight function only
(Todoroy and Filzmoser 2009), Therefore, we follow the same convention in the
performance comparison to be described in Sect. 3,

The Forward Search

‘The idea behind the Forward Search (FS) is to apply a flexible and data-driven
ming strategy to combine protection against outliers and high efficiency of
ators-._Fo_r this purpose, the S divides the data into a good portion that agrees
tulated model and a set of outliers, if any (Atkinson et al. 2004), The
atts from a small, robustly chosen, subset of the data and then fits subsets
m'g‘: size, in such a way that outliers and other observations not following
eral structure are revealed by diagnostic monitoring. Let mp be the size of
subset. Usually #mg = v + 1 or slightly larger. Let S be the subset of
the S at step m (m = my, ... .1), yielding estimates (m), by {(m)

1,...

N

M=y - Y ) (s Ay
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These distances are ordered to obtain the fitting subset at step m + 1, Whilst
remains outlier free, they will not suffer from 1nasking.

The main diagnostic quantity computed by the FS at step m is

f I‘m{m) imin = arg min Elz(m) fori ¢ S,
i.e. the distance of the closest observation to S ¥, among those not belonging to th
subset, The rationale is that the robust distance of the observation entering the fitti
subset at step m -+ 1 will be large if this observation is an outlier. Its peculiarity will
then be revealed by a peak in the forward plot of di, ? (m).

All the FS routines, as well as the algorithms for computing most of the com-
monly adopted estimators for regression and multivariate analysis, are contained
in the FSDA toolbox for MATLAB and are freely downloadable from http://www:
riani. i'MATLAB or from the web site of the Joint Research Centre of the European
Commission. This toolbox also contains a series of dynamic tools which enable the
user to link the information present in the different plots produced by the FS, such

as the index or forward plot of robust Mahalanobis distances d Z(m) and the scatter
plot matrix; see Perrotta et al. (2009) for details,

3 Comparison of Alternative Qutlier Detection Rules

Precise outlier identification requires cut-off values for the robust digtances when -
model (1) is trve. If /i = fipmep and £ = Zgpyep, Cerioli et al (2009) show
that the usually trusted asymptotic approximation based on the x2 distribution can
be largely unsatisfactory. Instead, Cerioli (2010) proposes a much more accurate j
approximation based on the distributional rules

- 1) —y—1
Fiaeer ~ 2L bet (3 u_) P ow—1

7 2 (12)

w41 {(w—1p

VW if
w w1

w; =0, (13)

where w; and w are defined as in Sect. 2.2. Cerioli and Farcomeni (2011) show f
how the same distributional results can be applied to deal with multiplicity of tests

to increase power and to provide control of alternative error rates in the outlier
detection process,

In the context of the Forward Search, Riani et al. (2009) propose a formal outlier
test based on the sequence d2 (m) m = My, ..., — 1, obtained from (11). In this
test, the values of dfmju (m) are compared to the FS envelope

mt, H/GT (m)2
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¢ fitting subset at step m + 1. Whilst ™ | where V2, is the 100a % cut-off point of the (m + D)th order statistic from the

“from masking. i scaled F distribution ,

ted by the FS at step m is 1 fn” =1y Fy ey, (14)
; m{m —v)

tg mind2(m) fori ¢ S, (11) | and the factor

P(X3+2 < Xﬁ,m/r:)
m/n

| 2 _
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rd plot of d?_(m). !t isthem /n guantil_e of Xf -

algorithms for computing most of the com- i The flexible trimming strategy enjoyed by the FS ensures a balance between
on and multivariate analysis, are contained | the two enemy brothers of robust statistics: robustness against contamination and
d are freely downloadable from http://www. ! efficiency under the postulated multivariate normal model. This makes the Forward
~f the Joint Research Centre of the European Search a valuable benchmark against which alternative competitors should be

compared. On the other hand, very little is known about the finite sample behaviour
of the outlier detection rules which are obtained from the multivariate S and MM
estimators summarized in Sect. 2.2. In the rest of this section, we thus explore the .
performance of the alternative rules with both “good” and contaminated data, under
different settings of the required user-defined tuning constants. We also provide
comparison with power results obtained with the robust RMCD distances (5) and
with the flexible trimming approach given by the FS.
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3.1 Size

* Size estimation is performed by Monte Carlo simulation of data sets generated
from the v-variate normal disiribution N (0, 1), due to affine invariance of the robust
dlstances ). The estimated size of each outlier detection rule is defined to be the

proportion of simulated data sets for which the null hypothesis of no outliers, i.e.

the hypothesis that all 7 observations follow model (1}, is wrongly rejected. For S

dMM estimation, the finite sample null distribution of the robust distances d 12 is
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effshape’: dummy variable setting whether efficiency of the MM eslimaror:
defined with respect to shape (effshape = 1) or to location (e £ £ shape
the default value);

nsamp: number of sub-samples of dimension (p+1) in the resampling algoritt;
for fast computation of S estimators (cur default value is 100);
refsteps: maximum number of iterations in the Iterative Reweighted Leas
Squares algorithm for computing MM estimators (cur default value is 20,

gamma: tail probability in (8) for Rocke’s Biflat function (the default valy,
is (L1},

Tables 1 and 2 report the results for n = 200, v = 5and v = 10, when @ = 0.0[°

is the nominal size for testing the null hypothesis of no outliers and 5,000

independent data sets are generated for each of the selected combinations of.

parameter values. The outlier detection rule based on S estimators with Tukey’s

Biweight function (7) is denoted by ST, Similarly, SR is the S rule under Rocke’s

Biflat function. It is seen that the outlier detection reles based on the robust § and
MM distances with Tukey’s Biweight function can be moderately liberal, but with
estimated sizes often not too far from the nominal target. As expected, liberality is
an increasing function of dimension and of the breakdown point, both for § and MM
estimators. Efficiency of the MM estimators (e £ £) is the only tuning constant which
seems to have a major impact on the null behaviour of these detection rules. On the
other hand, SR has the worst behaviour under model (1) and its size can become
unacceptably high, especially when v grows. As a possible explanation, we note
that a number of observations having positive weight under ST receive null weight
with SR (Maronna et al. 2006, p. 192). This fact introduces a form of trimmin gin
the corresponding estimator of scatter, which is not adequately taken fnto account.
The same result also suggests that better finite-sample approximations to the null

distribution of the robust distances d7 with Rocke’s Biflat function are certainly
worth considering,

-3.2 Power

We now evaluate the power of ST, SR and MM multivariate outlier detection rules.
We also include in cur comparison the FS test of Riani et al. (2009), using (14), .
and the finite-sample RMCD technique of Cerioli (2010), relying on (12) and (13).
These additional rules have very good control of the size of the test of ro outliers
even for sample sizes considerably smaller than n = 200, thanks to their accurate
cut-off values. Therefore, we can expect a positive bias in the estimated power of all

the procedures considered in Sect. 3.1, and especially so in that of SR,

In the RRCOV packege of the R softwire this option is called ef £, shape
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Table 2 Estimated size of the test of the hypothesis of no
ottliers for » == 200 and nominal test size o = 0.01, using
S estimators with Rocke’s Biflat functicn (SR), for different
values of y in (8). Five thoesand independent data sets are

generated for each of the selected combinations of parameter
values

gamma
015 010 005 0025 001 0.000

v=3 0066 0057 0055 0056 0056 0.061
v=10 0085 0080 0079 0078 0.077 0081

Average power of an outlier detection rule is defined to be the proportio

of contaminated observations rightly named to be outliers. We estimate it b

simulation, in the case n = 200 and for v = 5 and v = 10. For this purposg

we generate v-variate observations from the location-shift contamination model
Yi~ (L =8)N©O, 1)+ 8N + Ae, 1), i=1,...,n, (16

where 0 < § < 0.5 is the contamination rate, A is a positive scalar and e is a colum
vector of ones. The 0.01/n quantile of the reference distribution is our cut-off value
for outlier detection. We only consider the default choices for the tuning constants °
in Tables 1 and 2, given that their effect under the null has been seen to be minor.
We base our estimate of average power on 5,000 independent data sets for each of
the selected combinations of parameter values. e

It is worth noting that standard clustering algorithms, like g-means, are likely to .=
fail to separate the two populations in (16), even in the ideal situation where there
is a priori knowledge that ¢ = 2. For instance, we have run a small benchmark
study with n = 200, v = 5 and two overlapping populations by setting A = 2 and |
§ = 0.05 in model (16). We have found that the misclassification rate of g-means |
can be as high as 25% even in this idyllic scenario where the true value of gis i
known and the covariance matrices are spherical. The situation obviously becomes
much worse when g is unknown and must be inferred from the data. Furthermore,
clustering algorithms based on Euclidean distances, like g-means, are not affine
invariant and would thus provide different results on unstandardized data,

Tables 3-5 show the performance of the outlier detection rules under study for
different values of § and A in model (16). If the contarnination rate is small, it &
is seen that the four methods behave somewhat similarly, with FS often ranking
first and MM always ranking last as ) varies. However, when the contamination
rate increases, the advantage of the ES detection rule becomes paramount. In that
situation both ST and MM estimators are ineffective for the purpose of identifying
multivariate outliers, As expected, SR improves considerably over ST when v = 10
and § = 0.15, but remains ineffective when § = 0.3, Furthermore, it must be

recalled that the actual size of SR is considerably larger, and thus power is somewhat
biased.
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‘Table 3 Estimated average [
*model (16), in the case 7t = 2
rate § = 0.05. Five th.ousand
the selected combinations of §
S —

Mean :
2
=5 ST 0.344
SR 0.387
MM 0.148
RMCD  0.227
FS 0.359
v=10 ST 0.758
SR 0.856
MM 0479
RMCD  0.684
FS 0.808

Table 4 Quaniities as in

Mea:
2
y=5 ST 0.07.
SR 0.27:
MM 0.00:
RMCD 0.09
FS 0.58&
v=10 8T 6.00
SR 0.69
MM 0.00
RMCD 0.53
FS (.88

A qualitative explanation fo
shown in Fig. 1 in the simple ca
corresponding to 0.95 probabilit
for computing MM estimators,
model (16) withn = 200,8 = 0
function randn (200, 2) of M,
The contaminated units are show
the estimate of the robust centroi
lefi-hand panel corresponds to tl
is i = (0.19,0.,18) and the va
0.26, In this case the robust esti:
#o=(0,0) and ¥ = I, and the
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Table 3 Estimated average power for different shifts A in the contamination
model (16}, in the case # = 200, v = 5 and v = 10, when the contamination
rate & == 0,05. Five thousand independent data sets are generated for each of
the selected combinations of parameter values

Mean shift A
2 2.2 24 2.6 2.8 3
v=>5 ST 0344 0525 0.696 0827 0912 0963
SR 0.387 0549 0698 0820 0908 0957
MM 0.148 0280 0466 0.672 0.836 00935
RMCD 0227 0390 0574 0732 0.85 0.93
FS 0359 0567 0730 0.840 0.900  0.953
v=10 8T 0758 0919 0978 0995 0999 1
SR 0856 0946 0986 0997 0999 1
MM 0479 0782 0942 0990 0998 1
RMCD  0.684 03839 0956 0987 0997 1
FS 0.808 0911 098 09591 0998 1
Table 4 Quantities as in Table 3, but now for § = 0.15
Mean shift A
2 24 2.6 2.8 3 3.4
v=5 ST 0.073 0532 0772 050 0960 0.996
SR 0275 0433 0594 0742 0854 0925
MM 0606 0.010 0012 0016 0026 0397
. RMCD 0096 0428 0652 0.815 0913 0.988
: FS 0580 0.803 0.878 0.935 0965 0.993
v=10 8T 0.006 0.007 0008 001 0013 0.041
SR 0.696 (0.825 0.895 0923 0931 0946
MM 0.001 0.001 0.001 0.001 0003 0.030
RMCD 0530 0.938 0959 0993 1 1
FS 0887 0.938 0974 0991 0998 1

Jualitative explanation for the failure of multivariate MM estimators is
in Fig. 1 in the simple case v = 2. The four plots display bivariate ellipses
ing to 0.95 probability contours at different iterations of the algorithm
'l.l{ir_l_g MM estimators, for a data set simulated from the contamination
withn = 200, § = 0.15 and A = 3. The data can be reproduced using
n{200,2) of MATLAB and puiting the random number seed to 2,
iated units are shown with symbol o and the two lines which intersect
Of:f.thg robust centroid are plotted using a dash-dot symbol. The upper

1 corresponds to the first iteration (1), where the location estimate
0 18)’7a:nd the value of the robust correlation 7 derived from 5 is
¢ robust estimates are not too far from the true parameter values
= _.I , and the corresponding outlier detection rule {i.e., the ST




Table § Quantities as in Table 3, but row for § = 0.30
Mean shift A

2 24 26 28 3 4 6
v=5 ST 0.003 0005 0006 0007 00059 0016 0092
SR 0.006 0033 0286 0372 0458 0557 |
MM 0002 0.003 0004 0005 0.006 0012 8.085
RMCD  0.010 0159 038t 0637 0839 1 1
FS 0.627 0915 0920 0941 0567 | 1
v==10 ST 2.002 0002 0003 0003 0003 0.004 00]1
SR 0.002 0.005 0.004 0005 0.005 0011 0039
MM 0.001 0001 0.001 0001 0001 0001 0.00]
RMCD 0207 0842 0969 0994 0999 | 1
FS 0.904 0.929 0961 0980 0980 0.995 |
il, i = (0.19,0.18Y, » =0.26 4, fi = (0.36,031Y, » =048
; ~ ) :

-2

-2

Fig. 1 Elfipses corresponding to 0.95 probability contours at different iterations of the algorithm
for computing multivariate MM estimators, for 2 data set simulated from the contamination
model (16) withn = 200, v = 2,8 = 0.15 and ), = 3

rule in Tables 3-5) can be expected to perform reasonably well. On the contrary,
as the algorithin proceeds, the ellipse moves its center far from the origin and the
variables artificially become more correlated. The value of ¥ in the final iteration
(i8) is 0.47 and the final centroid i is (0.37,0.32)". These features increase the bias
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| 21 2k o %)
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0.006 0.007 0009 006 0092 2% e w ° ) . 40 ® s ® .
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0.004 0005 0006 0.012 0.085 ol e WS 2.0 PR °] ) o o °
04381 0.637 0839 1 L A s e : . o 4} ) R :, s o
0.920 0941 0967 1 1 » _p oTo o o R .
i —— 99.9833% band A = $9.9833% band
0.003 0003 0003 0004 0011 i R U (. 99% band 3 [ 99% band
0.004 0005 0003 0011 0.039 L4 : : : e < -
0.001 0,000 0001 0.001  0.001 i@ o] 10 20 30 40 50 60 10 20 30 40 50 60
0969 0994 0999 I 1 Unit Aumber Unit number
0961 0980 0989 0995 | Fig. 2 Index plots of robust scale residuals obfained using MM estimation with a preliminary
S-estimate of scale based on a 50 % breakdown point. Left-hand panel: 90 % nominal efficiency;
4, fi= (0.3 6.0.31), 7 =0.46 right-hand panel; 95 % nominal efficiency. The horizontal lines correspond to the 99 % individual

and simultaneous bands vsing the standard normal

of the parameter estimates and can conribute to masking in the supposedly robust
distances (10).

“/ A similar effect can also be observed with univariate (v = 1) data, For instance,
Atkinson and Riani (2000, pp. 5-9) and Riani et al. {201 1) give an example of a
regression dataset with 60 observations on three explanatory variables where there
are six masked outliers (labelled 9, 21 30, 31, 38 47) that cannot be detected using
ordinary diagnostic techniques. The scatter plot of the response against the three
explanatory variables and the traditional plot of residuals against fitted values, as
- well as the gq plot of OLS residuals, do not reveal observations far from the buik of
data. Figure 2 shows the index plots of the scaled MM residuals. In the left-hand
el we use a preliminary S estimate of scale with Tukey’s Biweight function (7)
nd 50 % breakdown point, and 90 % efficiency in the MM step under the same
n. In the right-hand panel we use the same preliminary scale estimate as
ut the efficiency is 95 %. As the reader can see, these two figures produce
fferent output, While the plot on the right {(which is similar to the masked
Qt'_'t_)f OLS residuals) highlights the presence of a unit (number 43) which
oundary of the simultancous confidence band, only the plot on the left
a smaller efficiency) suggests that there may be six atypical units (9, 21
47), which are indeed the masked outliers.
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show that the actual size of the outlier tests hased on multivariate § anpd
estimators using Tukey’s Biweight function and relying on the ¥? distribu;
larger than the nominal value, but the exteat of the difference is often 1ot dramg
The effect of the many tuning constants required for their computation is also 4
to be minor, except perhaps efficiency in the case of MM estimators. Theref
when applied to uncontaminated data, these rules can be considered as av
alternative to multivariate detection methods based on trimmin g and requiring m
sophisticated distributional approximations,

However, smoothness of Tukey’s Biweight function becomes a trouble w
power is concerned, especially if the contamination rate is large and the num
of dimensions grows. In such instances our simulations clearly show the advantagg
of trimming over § and MM estimators. In particular, the flexible trimmi ng approac
ensured by the Forward Search is seen to greatly outperform the competitors, eve:
the most liberal ones, in almost all our simulation scenarios and is thus to b
recommended.
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