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ROBUST TRANSFORMATIONS IN UNIVARIATE
AND MULTIVARIATE TIME SERIES
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� It is well known that transformation of the response may improve the homogeneity and the
approximate normality of the errors. Unfortunately, the estimated transformation and related test
statistic may be sensitive to the presence of one, or several, atypical observations. In addition,
it is important to remark that outliers in one transformed scale may not be atypical in another
scale. Therefore, it is important to choose a transformation which does not depend on the
presence of particular observations. In this article we suggest an efficient procedure based on
a robust score test statistic which quantifies the effect of each observation on the choice of the
transformation.
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1. INTRODUCTION

The analysis of data is often improved by using a transformation of
the response rather than the original response itself. However, finding
a suitable transformation can be strongly affected by the influence of a
few individual observations. These difficulties are enhanced in the case
of time series models since any anomalies are with respect to the specific
components of the model. Atkinson and Shephard (1996) develop single
deletion diagnostics for the effect of individual observations on the
estimated transformation in time series. As we will see, these methods
are prone to masking and swamping with a cluster of outliers, but more
generally are unable to identify the effect of subsets of observations on
the choice of the transformation parameters. In this article, we show how
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Robust Transformations 263

the forward search approach (Atkinson and Riani, 2000; Atkinson et al.,
2004) can be extended to robustly estimate the Box–Cox transformation
parameters and improve normality of univariate and multivariate time
series data. The emphasis in this article is on the state space form, so
that the outlined procedure can be easily applied both to multivariate
autoregressive integrated moving average (ARIMA) and structural time
series models.

The structure of the article is as follows. In Section 2 we provide a
unified framework for multivariate transformations both for independent
and correlated observations, and discuss the advantages and the drawbacks
of the score test applied to multivariate time series. In Section 3 we
describe our procedure for finding in a robust way the transformation
parameters. In Section 4 we apply the suggested procedure to real
time series and compare our results with those previously obtained in
the literature. In Section 5 we investigate the forward distribution of
the score test statistic for transformations in time series. Section 6 contains
concluding remarks and directions for future research.

2. MULTIVARIATE TRANSFORMATIONS TO NORMALITY

In this section we initially assume that the observations are
independent. Later we extend the results to multivariate time series. Let
(y1, � � � , yT ) be a random sample of T observations from a multivariate
distribution of dimension N . Let Y be a T × N matrix of observations
with t th row yt , the j th element of which is ytj . In the extension of the
Box and Cox (1964) family to multivariate responses there is a vector
� of N transformation parameters �j , one for each of the N responses.
The normalized transformation of ytj is given by

ztj(�j) = (
y
�j
tj − 1

)
/�j ẏ

�j−1
j (� �= 0)

= ẏj log yij (� = 0),
(1)

where ẏj is the geometric mean of the j th response. The value �j = 1
(j = 1, � � � ,N ) corresponds to no transformation of any of the responses.
Similarly, � = 0 corresponds to the log transformation for each variable
and so on.

We assume a multivariate linear regression model of the form

Z (�) = (X1�1, � � � ,XN�N ) + �, (2)

where Z (�) is a T × N matrix of normalized responses whose tj th generic
element ztj(�j) is defined in Eq. (1). The Xj , j = 1, � � � ,N are T × p
design matrices not necessarily equal. The �j are unknown vectors of
parameters and � is a T × N random matrix whose rows are i.i.d.
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264 M. Riani

If the transformed observations are normally distributed with mean
�t for the t th observation and covariance matrix �, twice the profile
loglikelihood of the observations is given by

2Lmax(�) = const − T log
∣∣�̂(�)∣∣

−
T∑
t=1

�zt(�) − �̂t(�)�
′�̂−1(�)�zt(�) − �̂t(�)� (3)

= const − T log
∣∣�̂(�)∣∣ −

T∑
t=1

et(�)′�̂(�)−1et(�), (4)

where zt(�) = (zt1(�1), � � � , ztN (�N ))T denotes the t th row of matrix Z (�)
and et(�) the N × 1 vector of residuals for observation t for the same
value of �. The calculation of �̂i(�) and �̂(�) is simplified when the
matrix of explanatory variables X is the same for all responses. As
a result, the least squares estimates can be found by independent
regression on each response, yielding the p × N matrix of parameter
estimates B(�) = (�̂1, � � � , �̂N ) = (X TX )−1X TZ (�). In other words, if the
explanatory variables are the same for all responses, the maximum
likelihood estimators of �j can be obtained regressing the j th column of
Z (�) on X (j = 1, � � � ,N ) (see for example Hamilton, 1994, p. 318). On the
other hand, when the Xj are different we have a so called SUR type model
and maximum likelihood estimation requires iteration (Zellner, 1962).

Once the parameter estimates �̂t(�) and �̂(�) are found, where

T �̂(�) =
T∑
t=1

et(�)e ′
t (�), (5)

we can substitute this estimate in (4). The profile loglikelihood reduces to

2Lmax(�) = const′ − T log
∣∣�̂(�)∣∣� (6)

So, to test the hypothesis � = �0, the likelihood ratio test statistic

TLR = T log
{∣∣�̂(�0)∣∣/∣∣�̂(�̂)∣∣} (7)

is compared with the 	2 distribution on N degrees of freedom. In (7) �̂ is
the vector of N parameter estimates maximizing (4), which is found by
numerical search. Replacement of �̂(�) in (7) by the unbiased estimator
�̂u(�) results in the multiplication of each determinant by a factor which
cancels, leaving the value of the statistic unchanged.

If the observations are not i.i.d., in order to take into account
both the presence of underlying components (trend, seasonal, etc.) and
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Robust Transformations 265

the autocorrelation structure of the time series, we have to put the
model in the state space form. The Kalman filter provides a unifying
tool for state-space model likelihood evaluation and prediction. Given
that both ARIMA and structural time series models can be put into the
state space formulation and can be estimated using the Kalman filter, the
description which follows provides a unified framework for the analysis of
transformations in multivariate time series. The extension of Eq. (2) to
multivariate time series is the state space form which follows

zt(�) = Zt
t + Xt�t + Gt�t (8)


t+1 = Tt
t + Wt�t + Ht�t , (9)

where �t ∼ WN (0, �2I ). Generally, the system matrices Zt , Gt , Tt , Ht ,
Xt , and Wt are functionally related to a vector of hyperparameters 
.
The measurement Eq. (8) is similar to the multivariate regression model
(2) except that now the parameters evolve according to the transition
Eq. (9). Vector �t in Eqs. (8) and (9) may contain random, diffuse
effects (i.e., trend and seasonal) and/or fixed effects (i.e., explanatory
variables). If it is equal to zero and 
1 ∼ N (a1 | 0, �2P1 | 0) with a1 | 0, P1 | 0 and
�2 known, the standard Kalman filter provides a recursive algorithm for
computing the minimum mean squared error estimator of 
t conditional
on z1(�), � � � , zt−1(�), i.e.,

at | t−1 = E(
t | z1(�), � � � , zt−1(�))

and its mean squared error (MSE)

MSE(at | t−1) = E [(at | t−1 − 
t)(at | t−1 − 
t)
′ | z1(�), � � � , zt−1(�)] = Pt | t−1�

More specifically, the Kalman filter is the set of recursions

vt(�) = zt(�) − Ztat | t−1 Ft(�) = ZtPt | t−1Z ′
t + GtG ′

t

qt = qt−1 + v ′
t(�)F

−1
t (�)vt(�) Kt = (TtPt | t−1Z ′

t + HtG ′
t )F

−1
t (�)

at+1|t = Ttat | t−1 + Ktvt(�) Pt+1 | t = TtPt | t−1T ′
t + HtH ′

t − KtFt(�)K ′
t , (10)

with q0 = 0. The filter innovations (one step ahead prediction errors) are
indicated by vt(�) and their variance by �2Ft(�) = var(vt(�)) = var�zt(�) −
E(zt(�)|z1(�), � � � , zt−1(�))�. These two quantities form the necessary
ingredients for the computation of the likelihood. The extension of
Eq. (4) to multivariate time series is given by

2Lmax(�, 
) = const − NT ln �2 −
T∑
t=1

ln |Ft(�)| − �−2qT � (11)
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266 M. Riani

The maximum likelihood estimate of �2 in equation (11) is

�̂2 = qT
NT

=
∑T

t=1 vt(�)
′F −1

t (�)vt(�)
NT

�

If �̂2 is concentrated out of the likelihood, the profile maximized
loglikelihood can be written as

2Lmax(�, 
) = const′ − NT ln
∑T

t=1 vt(�)
′F −1

t (�)vt(�)
NT

−
T∑
t=1

ln |Ft(�)|� (12)

As in model (2), different values of � can be compared by calculation of
the profile loglikelihood (12). Note that while for a random sample the
data enter the likelihood solely through the residual sum of squares of et(�)
and their covariance matrix, in multivariate time series, the corresponding
role of these quantities is played by vt(�) and Ft(�).

The likelihood ratio to test H0 : � = �0 becomes

TLR = NT ln
∑T

t=1 vt(�0)
′F −1

t (�0)vt(�0)∑T
t=1 vt(�̂)′F −1

t (�̂)vt(�̂)
+

T∑
t=1

ln�|Ft(�0)|/|Ft(�̂)|�� (13)

A disadvantage of this test is that a numerical maximization is required
to find the value of �̂. Given that for each univariate time series we
already have to estimate iteratively the parameters, the computational
burden added to estimate the transformation parameters is non trivial.
A computationally simpler alternative is to use a score test derived by
Taylor series expansion of Eq. (1). This linearization leads to the T × N
values of the N constructed variables

wtj(�0) = �ztj(�)
��j

∣∣∣∣
�=�0

= y
�0j
tj log ytj/

(
�0j ẏj �0j−1

) − ztj(�0)(1/�0j + log ẏj), (14)

in which the j th response is differentiated with respect to �j (Atkinson and
Riani, 2000, Chapter 4).

The combination of (14) and the state space formulation of Eq. (8)
yields the model

zt(�0) = Zt
t + Xt�t + w ′
t(�0)� + Gt�t (15)


t+1 = Tt
t + Wt�t + Ht�t , (16)

where wt = (wt1(�0), � � � ,wtN (�0))
′ and � = (�1, � � � , �N )′.
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Robust Transformations 267

Equations (15) and (16) are again a new state space formulation
with N extra variables wj(�0) derived from the transformation. The
new variables are called constructed variables for transformation. Using
the approximate score test to determine whether �0 is the correct
transformation of the N responses is equivalent to testing that the N
parameters �j , j = 1, � � � ,N are all zero.1 The approximate score statistic for
testing the transformation, TSC(�0), is the F statistic in the system which
includes the additional variables wj(�0) in (15). Of course, if N = 1 the
score test is nothing but the t test statistic associated with the variable
w(�0). Vector wt can be incorporated in matrix Xt to give

zt(�0) = Zt
t + X ∗
t �

∗
t + Gt�t (18)


t+1 = Tt
t + W ∗
t �

∗
t + Ht�t � (19)

Note that it is not restrictive that the parameter vector �∗
t appears in both

the measurement and transition equations, because the matrices X ∗ and
W ∗

t can be interpreted as selection matrices. Some specific components
of �∗ (i.e., trend and seasonal effects) are associated only with the initial
conditions 
0 and do not manifest themselves in zt(�0).

Up to now we have assumed that the initial conditions were known.
With nonstationary elements in order to avoid rounding errors we have
used the so called augmented diffuse Kalman filter (see De Jong and Chu
Chun Lin, 1994a,b). Basically, this solution requires augmenting the vector
recursions of the Kalman filter to matrix recursions and adding an extra
matrix recursion. A transition to the usual Kalman filter after some initial
point t = d is optional (see also Koopman and Durbin, 2003).

It is important to notice that even if originally there were no
explanatory variables, Eq. (18) due to the presence of the constructed
variables becomes a time series analogue of the seemingly unrelated
regression equation (SURE) model. This model is known in the time

1In order to better clarify this statement, let us consider a simple example. If we replace the
model

zt (�) = �0 + �1xt + �t

with the linear approximation

zt (�0) + (� − �0)wt (�0) ≈ �0 + �1xt + �t ,

then

zt (�0) = �0 + �1xt − (� − �0)wt (�0) + �t

= �0 + �1xt + �wt (�0) + �t , (17)

where � = −(� − �0). The t test for � = 0 (TSC (�0)) in (17) is the test of the hypothesis � = �0.
Because TSC (�0) is the t test for regression on −w(�0), large positive values of the statistic mean
that �0 is too low, and that a higher value should be considered.
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268 M. Riani

series literature with the name of system of seemingly unrelated time series
equations (SUTSE) model (see for example Harvey, 1989). It is also known
that when a SUTSE system contains the same explanatory variables and the
system is homogenous2 each of the N equations can be handled separately.
This is a generalization of the well-known result for SURE models which
states that when the same variables appear in each equation, the SURE
estimator can be obtained by applying Ordinary Least Squares (OLS) to
each equation in turn. In the case of the multivariate score test, it is
important to notice that once these additional explanatory variables wj(�0)
have been added to the model, the explanatory variables in each equation
are no longer the same and therefore the N equations cannot be handled
separately. Therefore, although the score test applied to multivariate time
series avoids the introduction of extra parameters in the maximization
procedure, it automatically introduces an additional iterative procedure.

3. ROBUST SCORE TEST

The score test, as we have seen in the previous section, avoids the
maximization of extra parameters in the likelihood. However, it is not
robust to the presence of atypical observations. In order to overcome this
problem, in this section we repeatedly fit the forward search algorithm
in the way suggested by Atkinson and Riani (2000) and extended to
time series by Riani (2004). The algorithm is both efficient and robust.
It is efficient because it makes use of the Gaussian likelihood machinery
underlying model (18). It is robust because the outliers enter in the last
steps of the procedure, and their effect on the statistics of interest is clearly
depicted. More generally, this approach allows evaluation of the inferential
effect that each time period, either outlying or not, exerts on the fitted
model. The key features of the forward search applied to time series can
be summarized as follows.

CHOICE OF THE INITIAL SUBSET

We take periods of contiguous observations as the basic sets of
our algorithm. These blocks are intended to retain the autocorrelation
structure of the whole time series (Cerioli and Riani, 2002). Confining
the attention to subsets of contiguous observations ensures that the
hyperparameters can be consistently estimated within each block. The
initial subset can be obtained through least median or least trimmed
of squares applied to these blocks. More precisely, let vt ,S (b+d)

r
(�) and

2The system is said to be homogeneous if all linear combinations of its N elements have
the same stochastic properties. The simplest example is the multivariate random walk plus noise
(Harvey, 1989, p. 435).
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Robust Transformations 269

�2Ft ,S (b+d)
r

(�) be respectively the vector of one step ahead prediction errors
and their covariance matrix for time unit t given observations in a subset
formed by b + d units (S (b+d)

r ) where d is associated with the first d
observations necessary to initialize the Kalman filter. For a nonstationary
time series of order d , twice the profile loglikelihood based on the
observations forming S (b+d)

r can be written as:

2Lmax(�, 
S (b+d)
r

) = const −
∑

�t∈S (b+d)
r | t>d�

ln |Ft(�)| − Nb ln �̂2� (20)

Here �̂2 is estimated using only the observations belonging to the subset
excluding the first d , that is, �̂2 = ∑

�t∈S (b+d)
r | t>d� v

′
t(�)F

−1
t (�)vt(�)/(Nb).

The symbol 
̂S (b+d)
r

denotes the MLE of the hyperparameters found
using only observations belonging to S (b+d)

r . Now let ṽt ,S (b+d)
r

=
�̂−1/2F −1/2

t ,S (b+d)
r

(�)vt ,S (b+d)
r

(�), t = d + 1, � � � ,T be the vector of one step ahead
standardized prediction errors for each unit based on the hyperparameters
estimated using observations belonging to S (b+d)

r and let ṽ2
�t�,S (b+d)

r
be the

squared t th ordered value. We take as our initial subset of observations
the (b + d)-tuple which satisfies

min
r

N∑
j=1

ṽ2
�[med]�,S (b+d)

r
(j) r = 1, � � � , k, (21)

where ṽ2
�[l ]�,S (b+d)

r
(j) is the j th element of vector ṽ

�[t ]�,S (b+d)
r

, med = [(T − d)/2]
and k denotes the number of subsamples which are extracted. Criterion
(21) extends the least median of squares method for regression models
with independent errors (Rousseeuw, 1984) and univariate response to
correlated multivariate observations. In this case, however, standardized
residuals instead of raw residuals are considered. In conclusion, we take
as our initial subset the stretch of data which minimizes the sum of the
medians of the squared one step ahead standardized prediction residuals.
It is necessary to remark that the forward search is not sensitive to the
method used to select the initial subset: for example, least trimmed squares
could be used in which the median in Eq. (21) is replaced by summation
over a fraction of the observations.

Progressing in the Search and Diagnostic Monitoring

The transformed model is repeatedly fitted to subsets of increasing size
and are selected in such a way that outliers are included only at the end
of the search. For this reason, in each step of size m, we take as the new
subset the one formed by the smallest squared Mahalanobis distances
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270 M. Riani

calculated using the standardized one step ahead prediction residuals.
For each m the residuals are ordered using observations transformed
according to the values specified in �0. One major advantage of the
forward search over other high-breakdown techniques is that a number
of diagnostic measures can be computed and monitored as the algorithm
progresses. The focus of this paper is to produce forward plots of the
approximate score statistic for testing the significance of the set of
constructed variables for different values �0, using a separate search for
each �0. These trajectories of the score tests can be combined in a single
picture named the “fan plot” (Atkinson and Riani, 2000). If the number
of observations is not large (i.e. less than 200), generally the five most
common values of �0 (−1,−0�5, 0, 0�5, 1) are sufficient for selecting the
appropriate transformation. On the other hand, when the sample size is
large we have to consider a finer grid of values of �0.

4. SOME EXAMPLES

In order to illustrate the additional insights which come from the
application of the suggested procedure, we use two series widely studied
in the literature. In the first example (Italian industrial production), the
robust score test enables us to quantify the percentage of observations in
accordance with the values of each �0 and to easily select in a robust way
the best value of the transformation parameter. In the second example
(kilowatt hours used), the procedure highlights a set of influential values
for the choice of the transformation parameter, which was not revealed by
the methods based on single deletion diagnostics.

4.1. Italian Industrial Production

Figure 1 shows the series of Italian industrial production, adjusted by
the Organisation for Economic Co-operation and Development (OECD)
for trading days variations, in the period January 1981–December 2002.
This series is characterized by seasonal troughs occurring in August.
Usually the ratio between the August value and a month in the spring
in the same calendar year is around 0.4 so we can expect that these
August figures will strongly influence the choice of transformation. In
order to compare our results with previous works we initially consider
the period January 1981–December 1996 (Kaiser and Maravall, 1999;
Proietti, 2000). Sometimes this series has been analyzed using logs
and other times using the original data. The spread level regressions
implemented in TRAMO SEATS (Gomez and Maravall, 1996) suggest
the log transformation. On the other hand, likelihood-based inferences
on the transformation parameter implemented in X12 ARIMA (Findley
et al., 1998) suggest that the series should not be transformed. Generally
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Robust Transformations 271

FIGURE 1 Italian industrial production adjusted by OECD over the period January 1981–
December 2002. The seasonal troughs occurring in August are evident.

the additive decomposition (� = 1) poses no particular feature about the
month of August. On the other hand, the multiplicative decomposition
seems to flag the months of August as outlying (Proietti, 2000). It is clear,
therefore, that the choice of the appropriate transformation turns out
to be a relevant issue. Table 1 gives the values of the score test statistic
using all the observations for 3 values of � fitting a basic structural model
with monthly trigonometric seasonality (Harvey, 1989, p. 47). As this
table shows, both � = 0�5 and � = 1 give values which are inside the 99%
confidence bands of the test. Our purpose is to discover, for example,
whether the value of the score test for � = 1 is due to the presence of
particular observations or is based on all the data.

Figure 2 shows the fan plot (Atkinson and Riani, 2000, p. 89) for three
values of �0 (0, 0�5, 1). This figure first of all enables us to detect in a robust

TABLE 1 Italian industrial production index over
the period January 81–December 96: values of the
score test for different values of �0 using all the
observations

�0 TSC (�0)

1 −2.55
0.5 1.84
0 −7.42
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272 M. Riani

FIGURE 2 Fan plot for �0 = (0, 0�5, 1) for the Italian industrial production index over the period
January 1981–December 1986 with 99% theoretical confidence bands coming from the standard
normal distribution.

and efficient way the interval of values of � which can be used to reduce
the data to approximate normality. Secondly, it clearly enables us to select
the values of the transformation parameters which are supported by the
majority of the observations. For example, Figure 2 shows that the score
test associated with � = 1 lies in the rejection region in the central part of
the search. Only the inclusion of the last 3 units which enter the search
in this scale brings the value of the test inside the acceptance region.
On the other hand, the curve associated with � = 0�5 always lies inside
the acceptance region throughout the search even if it always takes values
slightly greater than zero. There is no doubt therefore that if we limit our
analysis to the 5 most common values of �0, the square root is the best
transformation to obtain approximate normality.

It is interesting now to check how these results change when
we consider the whole period January 1981–December 2002 (264
observations). We may expect that with a larger number of observations
we have to try values of �0 with step 0.25. Figure 3 shows the fan plot for
�0 = (0�25, 0�5, 0�75, 1)′. This plot immediately shows that the hypothesis
of no transformation is always firmly rejected in the central part of the
search. The trajectories associated with � = 0�5 and � = 0�75 lie inside
the confidence region. Note, on the other hand, that if we use single
deletion diagnostics, and we delete the most remote observation in the
search for � = 1 and � = 0�5, we would be misled to choose � = 1 as the
best transformation parameter.
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Robust Transformations 273

FIGURE 3 Fan plot for �0 = (0�25, 0�5, 0�75, 1) for the Italian industrial production index over
the period Jan 1981–Dec 2002 with 99% theoretical confidence bands coming from the standard
normal distribution.

4.2. Kilowatt Hours Used

The second example concerns the series of kilowatt hours used per
month in a undefined region over 15 years (180 observations). There
are two explanatory variables associated with the weather. The first is
the heating degree days, that is the sum over the month of the number
of degrees F the average temperature on each day was below 65◦F.
The second explanatory variable measures the total degree days above
65◦F. Certainly, extra power may be expected to be consumed when the
weather is cold for heating or when it is hot for cooling. The presence
of the regression structure makes it less easy to assess potential difficulties
with the fitted model just using raw graphs. This series was introduced
by Pankratz (1991) and further analyzed using single deletion diagnostics
by Atkinson and Shephard (1996). They both suggest fitting logs. As a
matter of fact, the value of the score test when fitting a basic structural
model and using all the observations is equal to 0.718. So, it is completely
in agreement with the log transformation. The plot of the deletion score
test given by Atkinson and Shephard (1996) shows that no particular
observation seems to be important for the transformation. Figure 4 shows
the fan plot for the four values of �0 = (0, 0�25, 0�5, 1)′. First of all, this
plot shows that both �0 = 0�5 (square root transformation) and the � = 1
(no transformation) are always rejected. Furthermore, it is also interesting
to see that the log transformation is always rejected in the central part
of the search (the value of the score is above the upper threshold).
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FIGURE 4 Kilowatt data: fan plot. � = 0�25 is the best transformation.

The introduction of the last observations brings the value of the test inside
the confidence band. On the other hand, the trajectory associated with
� = 0�25 is always perfectly inside the envelope in the central part of the
search and goes below the lower threshold only in the final part. The score
test, given that there are no sudden jumps in the trajectories associated
with �0 = (0, 0.25 and 0.5)′, shows that no observation is influential for
the choice of the transformation if it is considered on its own. The effect
appears only when a set of units is considered jointly. Figure 5 shows
the monitoring of standardized one-step ahead prediction residuals with
the set of influential observations for transformation highlighted. This is
a group of observations showing large negative residuals in the central
part of the search. At the end, however, their residuals are completely
intermingled with those of the other units. It is clear that using single
deletion diagnostics it is impossible to detect the effect on the aggregate
statistics of this group of observations.

5. SIMULATION ENVELOPES FOR THE FORWARD
SCORE TEST

In order to evaluate whether the value of the test was significant
throughout the search, we have used the horizontal confidence bands of
the standard normal distribution. The question posed in this section is
whether this distribution is an appropriate reference distribution. The null
distribution of the forward version of the score test for transformation
with i.i.d observations has been analyzed by Atkinson and Riani (2002).
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FIGURE 5 Kilowatt data: monitoring of one-step ahead standardized prediction residuals.

These authors conclude that in regression, there is good agreement
between the simulated distribution and the normal distribution. However,
they noticed that at the end of the search there was evidence of a
distribution with slightly longer tails. This phenomenon, which Atkinson
and Riani (2002) called the “trumpet effect” was associated with models
which showed a low value of the R 2 coefficient. This relationship can
be explained by considering the structure of constructed variable plots
for simple samples, that is the scatter plots of the residual transformed
response against the residual constructed variable. The near parabolic
structure of these plots3 coupled with the fact that the search causes
extreme observations on the parabola to enter towards the end of the
search explains this phenomenon. Of course, this parabolic structure
disappears when there are several explanatory variables and a strong
regression structure (high R 2).

The purpose of this section is to analyze whether this remains true with
correlated observations. In time series, as is well known, the coefficient of
determination does not provide a useful yardstick for assessing goodness of
fit. However, two situations provide a benchmark for our study. The first is
when the ratio of the variance of the trend and seasonal hyperparameters
is very small with respect to the variance of the irregular term (i.e.,
smaller than 0.001). The second is when the variability of the signal

3See Atkinson (1985, p. 192) for a Taylor series justification of the parabolic structure and
the scatter plots of the residual transformed response against the residual constructed variable.
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FIGURE 6 Simulation envelopes (dashed bands) and asymptotic percentage points
0�5%, 2�5%, 5%, 95%, 97�5%, 99�5% of the standard normal distribution. Upper (lower) panel is
associated with high (low) values of signal to noise ratio.

(variance of trend and seasonal) is much larger than the variability of
the noise (i.e., greater than 1000). The distribution of the statistic is
estimated by simulating 10,000 time series with T = 200 observations from
a basic structural model and performing one forward search on each. The
upper panel of Figure 6 shows the 90%, 95%, and 99% empirical and
theoretical confidence bands when the ratio signal to noise is very large.
The real distribution of the statistic starts with longer tails than the normal.
In the central part of the search, the agreement is extremely good. Finally,
in the final part of the search there is evidence of a very slight spreading of
the distribution. The lower panel, on the other hand, shows the agreement
between these two distributions when the signal to noise ratio is very small.
Also, in this case the accordance seems to be very good in the central part
of the search. At the end of the search it is possible to notice the so called
“trumpet effect.” This implies that when the variability of the irregular
term is much larger than that of the other components, at the end of the
search we have a longer tailed distribution than the normal. In the central
part of the search, however, the agreement between real and theoretical
envelopes remains good irrespective of the values of the signal to noise
ratios.
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6. CONCLUSION AND EXTENSIONS
FOR FURTHER RESEARCH

There is an appreciable literature on the transformation of time series;
see among the others Granger and Newbold (1976), Lenk and Tsai (1990),
Tsai and Wu (1992), Pankratz (1991), Guerrero (1993), Atkinson and
Shephard (1996). A distinction between this contribution and the previous
works on transformations is that the emphasis was on aggregate statistics
or on standard deletion diagnostic methods. Using aggregate statistics it
is impossible to determine the effect that individual observations exert
on a particular transformation. On the other hand, the use of deletion
diagnostics is prone to masking and swamping. In our second example, we
have shown how the suggested robust procedure is able to detect a group
of observations which lead to the choice of a transformation which was not
supported by the majority of the data.
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