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This article extends the analysis of multivariate transformations to linear and quadratic
discriminant analysis. It shows that the standard application of deletion diagnostic tech-
niques for validating a particular transformation suffers from masking and so may fail if
several outliers are present. We therefore suggest a simple and powerful method which is
based on a forward search algorithm. This robust diagnostic procedure orders the observa-
tions from those most in agreement with the suggested model to those least in agreement
with it. It provides a unified approach to the detection of influential observations and outliers
in discriminant analysis. Simulated and real data are used to show the necessity of consid-
ering multivariate transformations in discriminant analysis. The examples demonstrate the
power of the suggested approach in revealing the correct structure of the data when this is
obscured by outliers.
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1. INTRODUCTION

Most statistical techniques for the analysis of multivariate data rely on the assumption
of multivariate normality. In the majority of cases the results obtained by the standard
application of these techniques are not robust to departures from this assumption. These
departures can be of two kinds: systematic, due to model misspecification, and isolated, due
to the presence of outliers. A severe problem is that a few outliers may not only hide each
other due to masking, but may also disguise systematic departures. This article introduces
a forward search algorithm that provides a robust and diagnostic analysis leading to the
detection of outliers and their influence and so to a consequent correct specification of the
model to be used in discriminant analysis.

The use of data transformations in discriminant analysis to achieve approximate mul-
tivariate normality was discussed by McLachlan (1992, sec. 6.3), who gave several refer-
ences. Section 2 provides the extension of the univariate power transformation of Box and
Cox (1964) to the systematic multivariate transformation of data for linear and quadratic
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discriminant analysis, thus providing a method for the removal of a form of systematic
misspecification.

Section 2 continues by considering isolated departures from the model. The last two
decades have seen the publication of many articles about outlier detection in discriminant
analysis. Campbell (1980, 1982), in the context of an M -estimation scheme, suggested
iterative methods in order to downweight the influence of outliers. Critchley and Vitiello
(1991) considered the sensitivity of misclassification probability estimates to the deletion
of one case in two population linear discriminant analysis. The quantities suggested by
Critchley and Vitiello and in a series of papers by Fung (1992, 1995a, 1995b, 1996, 1998)
all depend on two fundamental diagnostic statistics, which are analogous to the residual
and leverage measures in regression. Although these methods are helpful for the detection
of single outliers, they can fail if masking is present.

Section 2.3 uses a simulated example to show not only the necessity of considering
transformations in discriminant analysis, but at the same time the difficulties and the intri-
cacies in the choice of the appropriate transformations when some outliers are present in
the data. We exemplify these difficulties by finding a transformation and then by applying
diagnostic techniques for its confirmation.

Section 3 describes our robust diagnostic method, which overcomes masking. It is
based on the forward search described by Atkinson and Riani (2000) for regression data,
which we extend to multivariate observations. It allows us, at the same time, to estimate
the transformation of the data and to detect outliers. We use a robust method to find an
initial subset which is outlier free. This subset grows in size as we move forward through
the data. When we have found the correct transformation, the outliers enter last at the end
of the search and we can determine their effects on the estimated transformation and on
the properties of the discriminant analysis. We discuss the relationship with other robust
methods in Section 3 and, in the latter part of the section, illustrate the excellent behavior of
our method on the simulated dataset, showing how we are led to the correct transformation.

Section 4 is devoted to the analysis of data on muscular dystrophy. An earlier analysis
used only part of the data, so we are able to perform two analyses, one on the smaller
part and then a confirmatory analysis on the whole set of observations, while avoiding an
arbitrary division of the data. We find a transformation and sets of observations which are
influential for the transformation, as well as outliers which are not influential, and exhibit
their effect on the discriminant analysis. The results of our method are displayed through
plots that show which are the influential observations, in what way they are influential, and
what proportion of the data is compatible with any suggested transformation. Section 5
concludes.

2. TRANSFORMATIONS IN DISCRIMINANT ANALYSIS

2.1 DISCRIMINANT ANALYSIS

We begin with a brief definition of discriminant analysis, which serves to establish
notation. We then describe some standard procedures for checking the proposed discriminant
rule for the effect of outlying observations.
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Let πl denote the prior probability of an individual coming from population (group)
Pl, l = 1, . . . , g where g is the number of populations considered. If we indicate by p(y|l)
the density of the distribution of the observations for class l, then the posterior probability
that unit i belongs to class l after observing yi is

p(l|yi) =
πlp(yi|l)

p(yi)
∝ πlp(yi|l), i = 1, 2, . . . , n. (2.1)

Following the Bayes rule, we choose the class with maximum posterior probability
p(l|yi). If we assume that Pl is a multivariate normal population with mean μl and dispersion
matrix Σl, the log of the numerator of Equation (2.1) can be written as

− p

2
log 2π − 1

2
log |Σl| − 1

2
(yi − μl)T Σ−1

l (yi − μl) + log πl. (2.2)

Given training sets S
(ml)
i1,...,iml

= S
(ml)∗ of size ml from each population Pl, the maximum

likelihood estimates of the parameters μl and Σl are the means and covariance matrices of
these training sets: μ̂

l(S(ml)∗ )
and Σ̂

l(S(ml)∗ )
. The squared Mahalanobis distance for observa-
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i
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a quantity important in the forward search as well as in the calculation of classification
probabilities.

If the hypothesis of equality among covariances is true—that is, Σ1 = Σ2 = · · · =
Σg = Σ—then the training sets (m1, . . . , mg) are pooled for estimation of Σ to give the

overall training set (S(m)
∗ ) of size m =

∑g
l=1 ml. The estimated within groups covariance

matrix is

Ŵ(S(m)
∗ ) =

1
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and the squared Mahalanobis distances (2.3) become
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. (2.5)

If the covariance matrices of the groups are different we obtain quadratic discriminant
analysis. But if they are the same, the discriminant function is linear. In practice, linear
discriminant analysis is often preferred, because of the reduction in the number of parameters
to be estimated to determine the discrimination rule and the consequent decrease in variance
of the estimates.

As we will see in this article, transformations of the data can be used to help satisfy the
assumptions of normality and of equality of covariance matrices. If the assumptions are not
satisfied—that is, if the data are not appropriately transformed—the order of importance of
the variables may significantly change and the probability of misallocation may significantly
increase.
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2.2 TESTS OF TRANSFORMATIONS

One purpose of the transformation is to achieve a common covariance matrix for all
groups. However, we initially describe the transformation for the more general case in which
each group has its own covariance matrix. Let yijl be the ith observation on response j for
group l (i = 1, . . . , nl; j = 1, . . . , p; l = 1, . . . , g). In the extension of the Box and Cox
(1964) family to multivariate responses the normalized transformation of yijl is

zijl(λj) =
y

λj

ijl − 1

λjG
λj−1
j

(λj �= 0) (2.6)

= Gj log yijl (λj = 0), (2.7)

where Gj is the geometric mean of the jth variable. The value λj = 1 corresponds to no
transformation of the jth response. If the transformed observations are normally distributed
with mean μl and covariance matrix Σl (l = 1, . . . , g), the log-likelihood of the observations
is given by

l(λ) = −1
2

g∑

l=1

nl log |2πΣl(λ)| − 1
2

g∑

l=1

nl∑

i=1

(zil − μl(λ))T Σ−1
l (λ)(zil − μl(λ)), (2.8)

where zil = (zil1, . . . , zilp)T is the p × 1 vector which denotes the transformed data for
unit i coming from group l, μl(λ) and Σl(λ) are, respectively, the mean vector and the
covariance matrix for population l. Substituting the maximum likelihood estimates μ̂l(λ)
and Σ̂−1

l (λ) in Equation (2.8), the maximized log-likelihood can be written as

l(λ) = constant − 1
2

g∑

l=1

nl log |Σ̂l(λ)|. (2.9)

To test the hypothesis λ = λ0, the likelihood ratio test

TLR =
g∑

l=1

nl log{|Σ̂l(λ0)|/|Σ̂l(λ̂)|} (2.10)

can be compared with the χ2 distribution on p degrees of freedom. If the hypothesis of
equality of covariances is true, then Equation (2.10) becomes

n log{|Ŵ (λ0)|/|Ŵ (λ̂)|}, (2.11)

where n =
∑g

l=1 nl. In Equations (2.10) and (2.11) λ̂ is found by numerical search.
If we want to use standard deletion methods to validate a particular set of transforma-

tions, we have to delete each observation in turn and every time remaximize the likelihood.
Because of the necessity for remaximization, this approach becomes infeasible if multi-
ple deletions are required. In addition, if there is a group of influential observations, the
backwards approach may fail due to masking.
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Table 1. Simulated Data: Correct Transformation and Index Numbers of Contaminated Units

True transformation: λT 0.5 −0.5 −0.5 −0.5
Outliers: original scale 1 5 10 13
Outliers: transformed scale 51 84 92 99

2.3 IMPORTANCE AND DIFFICULTIES OF TRANSFORMATIONS IN DISCRIMINANT

ANALYSIS: A SIMULATED EXAMPLE

To illustrate the necessity, but at the same time the difficulties and intricacies of the
choice of the appropriate transformation in discriminant analysis, we use an example with
simulated data. This has been chosen to illuminate many of the inferential problems that
arise in the analysis of the muscular dystrophy data in Section 4.

We generated two groups of 50 observations with the same covariance matrix, so that
linear discriminant analysis is appropriate. Group one consisted of a 46 × 4 matrix from
a multivariate normal population with mean equal to 7.9 for all variables. The remaining
four units were generated from a multivariate normal population with a mean of 10.5 and
were included as observations 1, 5, 10, and 13. The 50 × 4 matrix of observations in Group
2 were also from a multivariate normal population, but with mean equal to 6.3. The normal
data were transformed by squaring the first variable and raising the remaining variables to
the power −2. So the true transformation vector is λ = (0.5, −0.5, −0.5, −0.5)T . Finally,
in this transformed scale we contaminated four units of the second group by subtracting 1.7
from the values of y3. A summary of the data structure is given in Table 1.

A correct analysis should find the true transformation and reveal those outliers that are
influential either on the transformation or on the misclassification probabilities. The next
section shows that our forward method does just that. This section shows the markedly
less successful outcome of an analysis using standard techniques, including some deletion
diagnostics. First, we quantify the effect on the discriminant analysis of getting the right
model. Some results are in Table 2. The nomenclature of the data is important. We intend:

Original or untransformed data to mean the dataset we generated which needs the
transformation of Table 1 to achieve normality for 96 of the observations.

Correctly transformed data are the data after this transformation, usually consisting of
the n = 92 uncontaminated observations.

The results of Table 2 show that finding the correct transformation leads to a three-fold
reduction in the average misclassification probability. The discriminant function changes
markedly, particularly in the loading on y1. The indication of the modified Box test for
equality of the covariance matrices is that there is clear evidence that they are not equal—
the statistic is to be compared with χ2

10. Quadratic discriminant analysis might then be
indicated. The results of this table show clearly how one might be misled by failing to
transform.

Before finding a transformation, we look at the data. Figure 1 shows the untransformed
data—they look very non-normal, but the four outliers on this scale, units 51, 84, 92, and 99
are not at all evident. The outliers on the transformed scale, 1, 5, 10, and 13 are evident in
Figure 2. We now consider the effect of the two sets of outliers on estimation of a normalizing
transformation.
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Table 2. Comparison of Discrimination Results Using Transformed and Untransformed Observations

Test for equality of covariances
Transformed Data (n = 92) 12.58
Untransformed Data (n = 100) 313.1

Average misclassification probabilities
Group 1 Group 2

Transformed data (n = 92) 0.04 0.08
Untransformed data (n = 100) 0.11 0.22

Elements of standardized canonical eigenvector
y1 y2 y3 y4

Transformed Data (n = 92) 0.08 0.45 0.38 0.48
Untransformed Data (n = 100) −0.23 0.23 0.32 0.63

Y1

0 2 4 6 8 1 2 3 4 5

1
2

3
4

5

0
2

4
6

8

Y2

Y3

0
1

2
3

4
5

6

1 2 3 4 5

1
2

3
4

5

0 1 2 3 4 5 6

Y4

Figure 1. Scatterplot matrix of untransformed simulated data. The filled triangles show the four outliers on this
scale—observations 51, 84, 92, and 99—which are not easily detected.
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Figure 2. Scatterplot matrix of transformed simulated data. The filled squares show the four outliers on this
scale—observations 1, 5, 10, and 13. All outliers are now detectable.

Throughout we assume that one purpose of the transformation is to find a scale in which
the two covariance matrices are the same and so we calculate likelihoods for such a model.
The maximum likelihood estimates of the transformation parameter, found by numerical
search, is λ̂ = (0.26, −0.49, 0.28, −0.24)T . The value of the likelihood ratio test for the
hypothesis of no transformation is equal to 360 and strongly suggests that the data must be
transformed. It is usual, and scientifically sensible, to try to find a simple transformation
close to λ̂. The values −1, −0.5, 0, 0.5, and 1 are commonly considered together with 1/3,
particularly if the variable is a volume.

Table 3 gives the likelihood ratio tests for several values of λ which seem plausible
and close to λ̂. The tests are to be compared to the χ2

4 distribution. To detect the effect of
individual observations on this inference we consider the effect of the deletion of single
observations on these tests. The table gives just the minimum and maximum values from this
computationally exhausting procedure—for each deletion the new parameter estimate λ̂(i)

has to be found by a numerical search in four dimensions. The results presented in Table 3,
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Table 3. Deletion Likelihood Ratio Analysis of Simulated Data

min(LR(i)) LR max(LR(i))

H0: λ = (0,0,0,0) 24.489 34.954 40.099
H0: λ = (0.5,−0.5,0.5,0) 8.706 11.996 15.518
H0: λ = (0.5,−0.5,−0.5,−0.5) 38.556 55.882 62.112
H0: λ = (1/3,−0.5,1/3,0) 3.042 4.847 6.326

therefore, required 401 maximizations. A computationally less demanding alternative to
these exact calculations is the use of constructed variables to find approximate deletion
statistics (Atkinson 1995). Since our main interest is not in deletion diagnostics, we do not
explore this method here.

We now consider the results of Table 3. The maximum likelihood estimates suggest
testing whether a common transformation is possible for all variables. The results of the first
line of the table show that the log transformation for all the variables is incompatible with the
data. If the maximum likelihood estimates are rounded to the five most common values of
λ, one obtains the hypothesis λ = (0.5, −0.5, 0.5, 0)T . The second line of the table shows
that the minimum value of the deletion likelihood ratio test is below the χ2

4(0.95) threshold
of 9.49. One could then start a backward procedure, deleting the observation associated
with the minimum value of the deletion likelihood ratio. The third row of Table 3 shows
the results when one tries to validate the correct transformation, which is the hypothesis
that λ = (0.5, −0.5, −0.5, −0.5)T . The smallest value of the deletion likelihood ratio is
well above the χ2

4(0.99) threshold suggesting that this combination of values of λ must
be firmly rejected. Finally, the last line shows the results when the null hypothesis is that
λ = (1/3, −0.5, 1/3, 0)T , a combination which comes from rounding the maximum likeli-
hood estimates of the first and third transformation parameters to 1/3 and the others to one of

Observation number
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6

Figure 3. Incorrectly transformed simulated data: single deletion likelihood ratio test, which supports the hypoth-
esis λ = (1/3, −0.5, 1/3, 0)T .
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Figure 4. Incorrectly transformed simulated data. Deletion Mahalanobis distances: (a) index plot, (b) QQ-plot
against chi-squared on four degrees of freedom.

the five most common values of λ. The maximum deletion value of the likelihood ratio is
below the χ2

4(0.95) threshold, while the final value (4.847) is very close to the expectation
of the χ2

4 distribution.
As a result of this diagnostic analysis one might think that λ = (1/3, −0.5, 1/3, 0)T

would be a good transformation, since the values of the statistic are always within the 95%
confidence boundary. The plot of this deletion statistic is in Figure 3. As the summary in
the table indicated, there are no obviously influential observations.

We now check this selected transformation for outliers, which might have an inflationary
effect on the estimation of the covariance matrix. Figure 4(a) is a plot of the deletion Maha-
lanobis distances for the transformation λ = (1/3, −0.5, 1/3, 0)T . There are no obviously
large values, although some are clearly larger than others. Because squared Mahalanobis
distances in this example should follow the χ2

4 distribution, we give in Figure 4(b) a QQ

plot of the squared distances against the chi-squared order statistics. There is no evidence
of outliers from this smooth and uneventful plot.

This simple example shows how extremely difficult it is, when outliers are present,
to find the correct transformation in discriminant analysis when the starting point is the
maximum likelihood estimates of the parameters based on all the observations.

3. A ROBUST AND EFFICIENT APPROACH TO
TRANSFORMATION IN DISCRIMINANT ANALYSIS

3.1 GENERAL PRINCIPLES OF THE FORWARD SEARCH

If the values of the parameters of the model were known, there would be no difficulty
in detecting the outliers, which would have large Mahalanobis distances. The difficulty arises



522 M. RIANI AND A. C. ATKINSON

because the outliers are included in the data used to estimate the parameters, which can
then, as we saw in the earlier example, be badly biased. Most methods for outlier detection
therefore seek to divide the data into two parts, a larger “clean” part and the outliers. The
clean data are then used for parameter estimation. The simplest example of this division of
the data into two parts is in the use of single deletion diagnostics, where the division is into
one potential outlier and the rest of the data. However, if multiple deletions are required,
there is a combinatorial explosion of the number of cases that have to be considered by such
backwards working.

Many methods for the detection of multiple outliers, therefore, use very robust methods
to sort the data into a clean part and potential outliers. In the resampling algorithm for the
detection of multivariate outliers using the minimum volume ellipsoid (MVE) (Rousseeuw
and van Zomeren 1990) the model is fitted to p + 1 observations. The resulting parameter
estimates are very robust, but are defined by the algorithm which produces them, a crucial
distinction with standard statistical methods such as maximum likelihood.

In the forward search, larger subsamples of outlier free observations are found by
starting from small subsets and incrementing them with observations which have small
Mahalanobis distances, and so are unlikely to be outliers. The method was introduced
by Hadi (1992) for the detection of outliers in regression. The emphasis in this and related
papers—for example, Atkinson (1994) which considers multivariate problems—is on using
the forward search to find a single set of parameter estimates and of outliers. These are
determined by the point at which the algorithm stops, which may be either deterministic
or data dependent. Our forward search runs to the end of the data, monitoring quantities of
interest at each step. If it were stopped early at a particular point, say when just over half the
data had been fitted, it would provide very robust parameter estimates. The comparisons in
Atkinson and Cheng (2000) show this use of the forward search in calculating least trimmed
squares estimators in regression. The fast algorithm for minimum covariance determinant
estimation of Rousseeuw and van Driessen (1999) likewise uses ordering of Mahalanobis
distances with an initial small subset. Very robust estimators in discriminant analysis were
studied by Hawkins and McLachlan (1997) and by He and Fung (2000). Stopping our search
early would give estimators with similar very high breakdown points.

This article not only extends the forward search to discriminant analysis, but uses it in
a completely different way: at each stage of the forward search we use information such as
parameter estimates and plots of Mahalanobis distances to guide us to a suitable model. Our
interest is in the evolution of the likelihood ratio test for transformations as m goes from r

to n (where p << r < n), together with the evolution of Mahalanobis distances and of the
misclassification probabilities. We monitor changes which occur, which will be associated
with the introduction of a particular observation into the subset m used for fitting.

Remark 1: The search starts with a robust estimator described in the next subsection,
which is based on a subset of r observations. Let this be θ̂∗

r and let the usual estimator of
means and covariances at the end of the search be θ̂∗

n = θ̂. In the absence of outliers and
systematic departures from the model

E(θ̂∗
r) = E(θ̂) = θ,
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that is, both parameter estimates are unbiased estimators of the same quantity. The same
property holds for the sequence of estimates θ̂∗

m produced in the forward search. Therefore,
in the absence of outliers, we expect parameter estimates, likelihood ratio tests, and Ma-
halanobis distances to remain sensibly constant during the forward search. We shall see in
examples that this is so.

Remark 2: Now suppose there are k outliers. Starting from a clean subset, these will
have large Mahalanobis distances and the forward procedure will include them towards the
end of the search, usually in the last k steps. Until these outliers are included, we expect
that the conditions of Remark 1 will hold and that plots of the Mahalanobis distances and
parameter estimates will remain sensibly constant until the outliers are incorporated in the
subset used for fitting.

Remark 3: Outliers in one transformed scale may not be outliers in another scale. If
the data are analyzed using the wrong transformation, the k outliers may enter the search
well before the end.

The forward search algorithm is made up of three steps: the first concerns the choice
of an initial subset, the second refers to the way in which we progress in the forward search
and the third relates to the monitoring of the statistics during the progress of the search.

3.2 STEP 1: CHOICE OF THE INITIAL SUBSET

We find an initial subset of moderate size by robust analysis of the matrix of bivariate
scatterplots. The initial subset of r observations, which we denote with S

(r)
∗ , consists of

those observations which are not outlying on any scatterplot, found as the intersection of
all points lying within a robust contour containing a specified portion of the data (Riani
and Zani 1997) and inside the univariate boxplot. More formally, let S

(rl)
i1,...,irl

be the initial

subset of size rl from group l (rl ≤ nl). A unit i from group l belongs to this subset
if i ∈ ∩p

j,k=1Ejk where Ejk denotes a robust bivariate contour with (1 − α) level if
j �= k = 1, 2, . . . , p or the traditional univariate boxplot if j = k. The overall initial subset
is found as: S

(r)
∗ = ∪g

l=1S
(rl)
i1,...,irl

. There are two versions of the robust bivariate contour.
The first uses convex hull peeling and B-spline smoothing (Zani, Riani, and Corbellini
1998). The second, more simple but less robust, is based on robust ellipses (Riani and Zani
1997). An important property of this method is that the size of the subset can easily be
increased or decreased by changing the level of the contour. In the examples that follow we
always use the quicker version, because we simply need to find an initial subset of a certain
size which is not contaminated by masked outliers.

3.3 STEP 2: ADDING OBSERVATIONS DURING THE FORWARD SEARCH

In every step of the forward search given a subset S
(m)
∗ of size m (m = r, . . . , n − 1),

(m = m1 + · · ·+mg), we move to a subset of size (m+1). The selection of these (m+1)
units can be unconstrained or constrained to obtain a balance across groups.
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Unconstrained. In every step of the forward search we simply select the (m+1) units
with the (m + 1) smallest Mahalanobis distances.

Constrained. Let Rl be the ratio between the number of units of universe l in the subset
and the global sample size: Rl = ml/nl, l = 1, . . . , g. We first select the groups with the
smallest Rl. Among these we increase by one unit the group which has the smallest ml+1th
ordered Mahalanobis distance (which we denote by d[ml+1]). For example, if d[ml+1] is in
group s, the new subset is formed by the units associated with the following distances:

d[m1], . . . , d[ml], l �= s = 1, . . . , g;

d[m1], . . . , d[ms+1].

In the constrained search we therefore impose the condition that the subset in every step of
the forward search must contain proportions of the units which agree, as closely as possible,
with the proportions in the overall sample.

Remark 1: Since we progressively include units with small Mahalanobis distances,
the units of a group with small variance will tend to be included by the unconstrained search
before those from a group with large variance. The problem is particularly severe when we
are considering transformations, when, before transformation, the groups may have very
different variances. When an unconstrained search is used, the analysis of the group to
which the last units belong provides information about differences in variance between the
groups. Both constrained and unconstrained searches provide useful information about the
structure of the data.

In most moves from m to m+1 just one new unit joins the subset. Occasionally two or
more units join S

(m)
∗ as one or more leave, an unusual event, which occurs when the search

includes one unit which belongs to a cluster of outliers. At the next step the remaining
outliers in the cluster seem less outlying and so several may be included at once. Of course,
several other units then have to leave the subset.

The forward search estimator θ̂FS is defined as the collection of maximum likelihood
estimators in each step of the forward search; that is,

θ̂FS =
(
θ̂∗

r , . . . , θ̂∗
n

)
. (3.1)

We use a robust method for the estimation of θ̂∗
r and maximum likelihood (that is fully effi-

cient) estimators during the remainder of the search. The zero breakdown point of maximum
likelihood estimators has advantages in the forward search. The introduction of atypical (in-
fluential) observations is signalled by sharp changes in the curves which monitor parameter
estimates, misclassification probabilities, or other statistics at every step. The robustness of
the method comes from the progressive inclusion of units into a subset which, in the first
steps, is outlier free.

The search which we use avoids the inclusion of outliers in the first steps and provides a
natural ordering of the data according to the specified null model. It is therefore possible to
know how many observations are compatible with a particular specification. Furthermore,
this approach enables us to analyze the inferential effect of the atypical units (outliers) on
the results of statistical analyses.
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Remark 2: Our approach is not sensitive to the method used to select an initial subset.
For example, the criterion based on robust bivariate boxplots can be replaced by estimation
of the minimum volume ellipsoid to provide an initial subset of size r = p + 1, without
affecting the last, important, part of the search. The first few steps of our searches are
occasionally quite active, as potentially outlying observations are identified and removed.
But the final, informative, third of the forward search is insensitive to the precise selection
of the initial subset.

3.4 MAHALANOBIS DISTANCES AND DISCRIMINANT ANALYSIS IN STEP 2

In our approach we use the forward search on Mahalanobis distances to monitor the
evolution of the posterior probabilities as observations are included in the subset.

We now consider the link between Mahalanobis distances and the probabilities.
From Equation (2.2) it is clear that the posterior probabilities are positively correlated

with the prior probabilities but are negatively related both to the Mahalanobis distances
from the various populations and to the determinant of the covariance matrix. The term |Σ̂l|
is linked to the Mahalanobis distance by the deletion relation
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∣
∣
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(ml − 1)2
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(
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(ml)
i1,...,iml

)

⎤

⎦ .

(3.2)
A large increase of Mahalanobis distance due to inclusion of unit iml

, therefore, will au-
tomatically also produce an increase in |Σ̂

l(S(ml)
i1,...,iml

)
|, which is likely to produce a big

change in the posterior probability of unit iml
. Thus, a forward search on the Mahalanobis

distance of every observation from its own population leads to inclusion in the last steps of
the search of those units which most affect the posterior probabilities. Equations (2.2) and
(3.2) show that the units which have the largest Mahalanobis distances (potential outliers)
are also those which are likely to produce jumps in the plot of the posterior probabilities.
If the covariance matrices for all groups are the same the determinants in Equation (2.2)
become equal for all groups. Then we have linear discriminant analysis when the posterior
probabilities depend just on the Mahalanobis distances and prior probabilities.

3.5 STEP 3: MONITORING THE SEARCH

Outliers and influential observations can be detected by simple graphical displays of
statistics involved in the forward search. It is extremely useful to monitor particular squared
Mahalanobis distances such as:

d2
[ml]

(
S

(ml)∗
) m = r, . . . , n l = 1, . . . , g (3.3)

and

d2
[ml+1]

(
S

(ml)∗
) m = r, . . . , n − 1 l = 1, . . . , g. (3.4)
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Statistics in Equations (3.3) and (3.4), respectively, refer to the maximum Mahalanobis
distance in the subset and the minimum Mahalanobis distance among the units not belonging
to the subset.

If the dispersion among the groups is markedly different, the curve of d2
[mt+1](S

(mt)∗ )

never overlaps that of d2
[ml+1](S

(ml)∗ )
, l �= t = 1, . . . , g. Moreover, these curves give, for

each group, a series of outlier tests comparing the observation about to be introduced with
those already in. If one or more atypical observations are present, the plot of d2

[ml+1](S
(ml)∗ )

shows a peak in the step prior to the inclusion of the first outlier, while the plot monitoring
d2
[ml](S

(ml)∗ )
shows a sharp increase when the first outlier joins S

(m)
∗ . This curve may also

show a subsequent decrease due to masking.
Another way to examine the differences in variability between the two groups is to

monitor

log |Ŵ(
S

(m)
∗

)| m = r, . . . , n; (3.5)

that is, the logarithm of the determinant of the estimated within groups covariance matrix
defined in Equation (2.4). Whether or not a balanced search is used, this plot will be an
approximately straight line when the groups have the same variability: each observation,
regardless of group, will make much the same contribution to Ŵ . However, if the variability
in the groups is different and a balanced search is used, the plot will have a zig-zag form.

In the following sections we will refer to Equations (3.3), (3.4), and (3.5) as monitoring
the “maximum distance,” the “minimum distance,” and the “pooled determinant.”

3.6 FINDING A TRANSFORMATION WITH THE FORWARD SEARCH

With just one variable for transformation it is comparatively easy to use our forward
search to find satisfactory transformations, if such exist, and the observations that are in-
fluential in their choice. Riani and Atkinson (2000) performed a forward search using five
standard values of λ (−1, −0, 5, 0, 0.5, and 1) and monitor the score statistic for transforma-
tions for each search. However, with four variables for transformation there would be 625
combinations of the standard values. Whether or not the calculations are time consuming,
trying to absorb and sort the information would be difficult. We therefore suggest three
steps to help structure the search for a transformation:

1. Run a forward search through the data, ordering the observations at each m by
Mahalanobis distances calculated from untransformed observations. Estimate λ at
each value of m. Use the results to select a set of transformation parameters.

2. Rerun the forward search using distances calculated with the parameters selected
in the first step, again estimating λ for each m. If some change is suggested in λ,
repeat this step until a reasonable set of transformations has been found. Let this be
λR.

3. Test the suggested transformation. We expand each transformation parameter in turn
around the five common values of λ (−1, −0.5, 0, 0.5, 1), using the values of the
vector λR for transforming the other variables. In this way we turn a multivariate



A UNIFIED APPROACH TO OUTLIERS, INFLUENCE, AND TRANSFORMATIONS 527

(a)

(b)

Subset size m
60 70 80 90 100

-1
.0

0.
0

1.
0

1

3 4

2

Subset size m
60 70 80 90 100

0
10

30

Figure 5. Simulated data. Forward search ordering Mahalanobis distances based on λ = (0.5,−0.5,0.5,0): (a)
MLE of transformation parameters. The numbers by the curves are the labels of the y; (b) likelihood ratio test
for the parameter value used in the search. The horizontal lines are the 5% and 1% points of the associated χ2

distribution.

problem into a series of univariate ones. In each search we can test the transformation
by comparing the likelihood ratio test with χ2 on 1 degree of freedom. But we use
the signed square root of the likelihood ratio in order to learn whether lower or
higher values of λ are indicated.

In Step 2 of the procedure we suggest using an unconstrained search because, if the data
are appropriately transformed, a cluster of k outliers from one group will enter the subset in
the last k steps of the forward search. We now exemplify this procedure for the simulated
data discussed in Section 2.3 using unconstrained searches. We notice however, that the
conclusions we reach are not at all affected by this choice.

Step 1. We start with a forward search using for ordering the Mahalanobis distances
based on untransformed observations. The curves for the parameter estimates, which we
do not show, are stable apart from that for λ3 which shows a jump when the subset size
m is between 70 and 80. If we consider only the five most common values of λ, this plot
suggests taking λ = (0.5, −0.5, 0.5, 0)T in the second search.

Step 2. Figure 5 shows the results of this new search. The maximum likelihood esti-
mates in Figure 5(a) are much more stable during the central part of the search than they
were for the search in Step 1. The jump in values for λ3 now occurs between m = 95 and
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Figure 6. Simulated data. Forward search ordering Mahalanobis distances based on λ =(0.5,−0.5,−0.5,−0.5):
(a) MLE of transformation parameters; (b) likelihood ratio test for the parameter value used in the search. The
outliers now enter at the end of the search. The numbers by the curves are the labels of the y.

m = 98. This means that we have begun to find a transformation in which the outliers are
clearly identified and enter near the end of the search. If the transformation were correct the
outliers would enter at the end. But the plot of the likelihood ratio test for the null hypoth-
esis that the value used in ordering is correct, shows in Figure 5(b) that evidence against
these values accumulates steadily during the forward search until the very end, when the
introduction of the last few observations causes the transformation to become seemingly
acceptable.

The next combination of values of λ which is suggested by the stable part of the search
in Figure 5(a) up to m = 95 is λ = (0.5, −0.5, −0.5, −0.5)T . The forward search using
these new values is shown in Figure 6. In this case all the estimates along the forward
search are as specified in our vector λ until m = 97. The plot of the likelihood ratio in
Figure 6(a) shows that it is the last three observations to enter which cause rejection of our
initial estimate. We therefore take λR = (0.5, −0.5, −0.5, −0.5)T for further diagnostic
calculations.

Table 4. Order of Inclusion of Observations for Search With λR = (0.5, −0.5, −0.5, −0.5)T

Step (m) 92 93 94 95 96 97 98 99 100
Unit Included 69 5 13 10 1 99 51 92 84
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Figure 7. Simulated data: signed square root of the likelihood ratio test for transformation, confirming λR =
(0.5,−0.5,−0.5,−0.5). The numbers by the curves are the values of λ.

Step 3. As a result of our forward analysis we have easily recovered the transformation
in Table 1 which leads back to normality. Equally important, we can now identify the outliers
that were causing difficulty in finding these transformations. Table 4 gives the order of
inclusion of the last nine units in the forward search with λR. The last four are the units
that are outliers on the scale in which we started to analyze the data. The four before are
outliers once we have correctly transformed the data.

We now identify the effect of the individual influential observations by running searches
for the five standard values for each parameter in turn. Figure 7 shows the signed square
root of the likelihood ratio test for 20 forward searches (5 for each variable) around the
vector λR. This plot (using 99% confidence bands) shows that for the first variable the
square root transformation is the best. Even if the null hypothesis of log transformation
cannot be rejected at the 99% level the corresponding curve is very close to the rejection
line. For the second and fourth variables only λ = −0.5 seems to be compatible with the
data. Finally, the most interesting plot is the one for variable 3. The hypothesis λ = −0.5
is perfectly in agreement with the data up to the inclusion of the last four units which are
observations 99, 51, 92, and 84. The effects of these four units in the five searches are very
different. When λ = −1 or λ = −0.5 they are included in the last four steps and cause a
big jump in the value of the statistic. When λ = 0 and λ = 0.5 they are included around
the end of the search and cause the value of the statistic to re-enter inside the confidence
bands. Using λ = 1 these 4 observations are included in the middle of the search and
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Figure 8. Simulated data: posterior probabilities of correct classification of units of group one after correct
transformation λR .

cause an upward jump. In this scale, however, the steady downward trend caused by all the
other observations again brings the value of the statistic below the lower threshold. A fuller
discussion of similar behavior for a different example with four masked outliers was given
by Atkinson and Riani (2000, p. 107).

The plot in Figure 7 is easy to understand and at the same time very powerful be-
cause it clearly shows which and how many observations are responsible for a particular
transformation and what is the inferential effect of each unit on the results of statistical
analyses.

3.7 DISCRIMINANT ANALYSIS AND CONFIRMATION OF THE TRANSFORMATION

We now look at the effect of our transformation on the behavior of the discriminant
analysis. Since there is no explicit connection between the Box–Cox transformation and
discrimination, we repeated our analysis of transformations by finding values of λ which
minimized the misclassification probabilities, rather than maximizing the likelihood (2.8).
The answers were not very clear. The transformations of some variables were reasonably
defined, but for those with a small weighting in the canonical eigenvector the transfor-
mation was very poorly defined. Transformation of such a variable has little effect on the
discrimination, even if the small value is caused by outliers. We therefore did not pursue
this procedure.

The results of Table 2 stress the importance, for discriminant analysis, of correctly trans-
forming the data. We now consider the much more detailed information on discrimination
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Figure 9. Simulated data: posterior probabilities of correct classification of units of group two after correct
transformation λR .

which is gathered from the forward search.
Figure 8 gives the probabilities of correct classification of units in Group 1 during the

last third of the search. There are three units—6, 45, and 15—which are not well classified.
The classification of the other units remains stable and good until the search reaches m = 92.
Then the four outliers from Group 1 enter, one after the other, and cause the probabilities
to worsen. At the end of the search units from Group 2 enter and do not have much effect
on the probabilities in Group 1.

The plot for Group 2 is much more dramatic. We see from Figure 9 that the outliers on
the original scale of our data are even more outlying after the data have been transformed—as
would be expected from their large influence on the transformation. When these observations
are introduced, the probabilities change appreciably and the units move to being correctly
classified. But there remain two observations, 74 and 86, on the boundary of the two groups,
for which the probabilities oscillate during the search. Also the naturally outlying 69 is
continually misclassified.

Finally in Figure 10 we look at the monitoring of the Mahalanobis distances and Box
statistic during the search. Figure 10(a) shows the maximum distance monitoring plot. In
the first stages the plot shows that the maxima are very close—there is no evidence of any
difference in variance in the two groups. When m = 92, observation 69 enters Group 2
(the order of inclusion of the last observations is given in Table 4) and the distance jumps
up. After that four outlying units enter Group 1, causing a jump in the maximum distance
for that group. As successive units enter there is a slight decrease due to masking, but
observation 1 causes a slight increase. After this the last four units enter Group 2—there is
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Figure 10. Correctly transformed simulated data. Monitoring, during the forward search, (a) the maximum
Mahalanobis distance of units included in the subset and (b) Box test of equality of covariance matrices.

again a big increase in the distance for Group 2, which then drops back a bit due to masking.
The distances for Group 1 are hardly altered by the introduction of these four units, despite
the common estimate of the covariance matrix used. Two conclusions from this plot are that
initially the within group variances are very similar and that we do not need to constrain
the search to be balanced—a situation very different from that of the example in the next
section. And, second, that the outliers, influential or not, are entering at the end of the search.

We finish with Figure 10(b) in which we monitor the Box statistic for equality of
variances. This is constant in the earlier stages of the search, below the 5% point, showing
no evidence of any inequality. But, at the end of the search, starting with observation 97,
the evidence for nonequality of covariance matrices builds steadily. The starting point of
m = 97 for this information agrees with the plot of Figure 10(a) where, although there is an
increase in distances from m = 92, the distances for both groups initially increase together.
Only from m = 97 are the two curves markedly different.

Our exemplary analysis of these data has enabled us, in a straightforward manner, to
recover all the features that we built into the data and to assess their effects on discrimination.
We now use this experience to analyse a set of data about which we have no such prior
knowledge.

4. MUSCULAR DYSTROPHY DATA

4.1 THE DATA

We now apply our method to a real dataset. Duchenne Muscular Dystrophy (DMD)
is a genetically transmitted disease, passed from a mother to her children. Affected male
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offspring may unknowingly carry the disease but male offspring with the disease die at
a young age. Although carriers of DMD usually have no physical symptoms, they tend
to exhibit elevated levels of serum markers. In addition, the levels of these enzymes may
also depend on age and season. Levels of the enzymes were measured in noncarriers and
in a group of carriers using standard laboratory procedures. The variables used are: Age
(AGE = y1), month of the year (M = y2), creatine kinase (CK = y3), hemopexin (H = y4),
lactate dehydrogenase (LD = y5), and pyruvate kinase (PK = y6). The first two serum
markers (CK and H) may be measured rather inexpensively from frozen serum. The second
two (LD and PK) require fresh serum. An important scientific problem is whether use of
the expensive second pair of readings causes an appreciable increase in detection. A further
feature of the data is that the water supply to the laboratory was changed in the course of
the study, although when is not recorded. It is therefore likely that some outliers are present
in the data.
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Figure 11. Small muscular dystrophy dataset. Scatterplot matrix of untransformed data. Triangles are carriers,
squares are noncarriers.
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Figure 12. Small muscular dystrophy dataset. Estimates of transformation parameters from an unbalanced search
on untransformed data. The numbers by the curves are the labels of the y.

In the analysis of these data we make use of the expertise and insights gained in ana-
lyzing the simulated data in Section 3. We start with the 73 observations used by Rencher
(1995, p. 170), find a transformation, look for and identify outliers and consider discrimi-
nation. We then move to the complete dataset given by Andrews and Herzberg (1985, pp.
223–228) and see how well our model fits. We have thus the advantages of a confirmatory
sample splitting, without having, ourselves, to make an arbitrary split of the data.

4.2 FINDING THE TRANSFORMATION

We first, as ever, look at a plot of the data, which is given in Figure 11. For clarity on
the printed page we include only variables 1, 3, 4, 5, and 6. It certainly looks as if the data
should benefit from transformation—some marginal distributions are skew, the variances
in the two groups appear different, and there may be some outliers.

Step 1. As before we start with a forward search using untransformed data to obtain a
preliminary idea of a good transformation. The resulting forward plot of parameter estimates,
using an unbalanced search, is in Figure 12. For most of the plot the estimates of all λ’s
except λ1 are reasonably stable, with some downward drift, but no sudden jumps. The
exception is the estimate for λ1 which decreases gradually to 0.5 when at m = 62 it drops
abruptly to −1. Our previous experience suggests that a group of outliers may be entering
at this point. To determine whether this is so, we use λ1 = 0.5 in Step 2.
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Figure 13. Small muscular dystrophy dataset. Estimates of transformation parameters from a search with λ =
(0.5,1,−0.5,1,0,0). The numbers by the curves are the labels of the y.

Remark. Figure 12 shows the effect of performing an unbalanced search with un-
transformed data. There are two groups with the smaller observations predominantly in one
group, so that observations from that group tend to enter the search earlier. Whether or not
we use a balanced search, the later observations to enter the search will be those that are
more informative about the transformation. The curves of the estimates will then tend to
drift away from one if a transformation is needed. When we search on the correct scale, if
there is such, the two groups will have similar variances and observations from one group
will not enter the search preferentially in the earlier stages.

In Figure 12 we show more of the search than is needed to determine the transformation,
in order to exhibit the amount of movement that may be found in the initial stages of the
search. At the beginning, one or two unmasked outliers may have been included, but are
rapidly removed by the forward search. If it is felt that the results of the search are being
influenced by the starting conditions, several searches can be run from a variety of starting
points. We found here, as usual, that for all starts the last third of the plot was unchanged.

Step 2. We now run the forward search from the starting point suggested in Step 1, that
is, with λ = (0.5, 1, −0.5, 1,0,0)T . The resulting forward plot of estimates is in Figure 13.
The change in λ̂1 is now right at the end of the search, starting with m = 71. The last three
observations to enter—46, 67, and 68—have a large effect on the estimated transformation.

The effect of the last three observations on the evidence for the transformation is
visible in Figure 14(a), which shows the manner in which the likelihood ratio statistic for
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Figure 14. Small muscular dystrophy dataset. Results of a search with λ = (0.5,1,−0.5,1,0,0): (a) likelihood ratio
test of the transformation during the forward search; (b) deletion likelihood ratio test, which fails to identify the
importance of the outliers. The horizontal lines give the 95 and 99% points of χ2

6.

this transformation jumps up at the end of the search, so that the transformation is rejected
by the test. Our initial conclusion is that we have found the correct transformation and that
there are three outliers.

The masked nature of these outliers is demonstrated in Figure 14(b), which shows the
deletion version of the likelihood ratio test of Figure 14(a). Although individual deletion
of our three outliers (46, 67, and 68) causes the three largest decreases in the statistic, the
decrease is nothing like significant. One would be hard put to it to identify the importance
of these three observations from this plot.

Step 3. We now confirm the suggested transformation. Figure 15 shows a signed square
root likelihood ratio expansion for each variable around λR = (0.5, 1, −0.5, 1, 0, 0)T . Since
we are interested in the fine structure of the plot, even for wrong transformations, we used
a balanced search.

The plot shows that only −0.5 is reasonable for y3. For y2 and y4 λ = 1 seems to be best
even if the data do not provide significant evidence against the square root transformation for
y4. The plot for y6 confirms that the best transformation for this variable is the logarithm, as
it is for y5. Notice a small jump at the end of the curve for y5 when λ = −0.5. This is caused
by unit 24 (the smallest for y5). It is only for y1 that the three outliers we have identified are
highly influential for the transformation. The panel for y1 shows that the presence of units
46, 67, and 68 is incompatible with λ = 0 (at the 5% level), 0.5 and 1. The other two values
appear to be compatible with all the data but the inclusion of the three observations earlier
in the search causes breaks in the levels of the curves

A final comment on these plots, especially that for y1, is that the three outliers are all in
Group 2, the carriers of the disease. With the balanced search they cannot enter the subset
consecutively, so that their inclusion is spread over the last five values of m.
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Figure 15. Small muscular dystrophy dataset: signed square root of the likelihood ratio test for transformation,
confirming λR = (0.5,1,−0.5,1,0,0). The numbers by the curves are the values of λ.

A benefit of the forward search is that it can clearly determine the number of units
compatible with a particular transformation without suffering from masking effects.

4.3 OUTLIERS AND DISCRIMINANT ANALYSIS

Our procedure has suggested three outliers. It is important to refer these back to the
original data. Their influence was on the transformation of variable 1, age. The three outliers
are by far the oldest people present. For the other 70 observations the ages range from 29–42.
The three outliers have ages at measurement of 58, 58, and 59. Once our attention has been
drawn to them by the forward analysis, not only are they clearly evident in the scatterplot
matrix of transformed data (Figure 16) but they are also evident at the top of the top row
of plots in the scatterplot matrix of untransformed data (Figure 11). Finally, if we compare
Figure 16 with Figure 11 we can clearly see how much more normal the data have become.

The effect of the transformation on the discriminant analysis is appreciable. For our
comparisons we use the transformation λR = (0.5, 1 , −0.5, 1, 0, 0)T for all 73 observations.
Some results are in Table 5, both for all 73 observations and for the 70 observations when
the outliers are deleted.

Failure to use the transformation results in an approximately 25% increase in misclas-
sification, whether or not the outliers are excluded. Under similar conditions, use of the
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Figure 16. Small muscular dystrophy dataset: scatterplot matrix of transformed data showing revealing observa-
tions 46, 67, and 68. Squares are noncarriers, triangles are carriers, and filled triangles are outliers.

transformation gives almost 80% of the units a decreased probability of misclassification.
These results on probabilities can be visualized by ordering the probabilities of misclassifi-
cation for each group and then plotting the logits of the probabilities against order number.
Figure 17 shows that the improvement is over almost all units.

4.4 MORE DATA

We now extend our analysis from the 73 units studied by Rencher to the 194 complete
observations originally given by Andrews and Herzberg (1985). An interesting question is
the stability of our conclusions in the extended set. If observations 46, 67, and 68 are treated
as outliers, 0.5 is a good estimate of λ1. If they are treated as part of the data, then −0.5 is a
better value. These three individuals appeared as outliers because they are much older than
the remaining 70. But the results of Table 5 show how little effect these observations have
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Table 5. Dystrophy Data, Small Set (73 observations). Overall misclassification results for discrimina-
tion using transformed and untransformed observations: λR =(0.5, 1 , −0.5, 1, 0, 0)T: n = 70,
observations 46, 67, and 68 deleted

n = 73 n = 70

Transformed data 0.153 0.159
Untransformed data 0.188 0.199
Percentage of units improved 79.5 77.1

on the discriminant analysis.
The data with 194 units are no longer balanced—there are 127 noncarriers but Group

2 contains only 67 carriers. With the new data we may expect that there may be some
additional outliers. Also there are 14 new units with ages at least 43. Although these are all
carriers, they can be expected to tell us something about the three outliers identified in the
smaller dataset.

We do not display here the results of the three stages in finding a suitable multivariate
transformation, but move straight to the confirmatory expansion in five values of λ. The
conclusion is that the previous transformation holds except that now λ1 = −0.5. The 14
newly included units for subjects at least 43 years old thus provide information to support the
stronger transformation of y1 indicated by the three units out of the initial 73. We therefore
want to confirm the value λR = (−0.5, 1 , −0.5, 1, 0, 0)T . The signed square-root tests from
the expansion around this value are plotted in Figure 18, in which we have used a balanced
search as some of the 30 forward searches are for values far from λR. The order of inclusion
of the units for the search with λR is given in Table 6.

The plots for variables 1, 2, and 3 are uneventful. The inclusion of observation 78 at
the end of the search causes a jump in the value of the statistic for λ4 as it does for that for
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Figure 17. Small muscular dystrophy dataset: the upper curve is the logit of the posterior probability of correct
classification after transformation, the lower curve that before.
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Figure 18. Large muscular dystrophy dataset: signed square root of the likelihood ratio test for transformation,
confirming λR = (−0.5,1,−0.5,1,0,0). The numbers by the curves are the values of λ.

λ6, which is also slightly influenced by observation 53. But there is no reason to question
the suggested value of λR.

We now examine the data for any other outliers and the effect of transformation on
their presence. If there are any further outliers, the plots in Figure 18 show that they will
not have had an influence on the choice of transformation.

We start with the untransformed data. Because we are interested in the differences
between the groups we use a balanced search so that we can monitor the Mahalanobis
distances from the two groups as the search evolves. Figure 19(a) (minimum distance
monitoring plot) shows that before transforming the groups seem to have a completely
different structure in terms of Mahalanobis distances. The different structure of the two
groups is also immediately evident from the zig-zag in Figure 19(b) (pooled determinant
monitoring). The addition of a first and second unit from Group 1 does not have as big
an effect on this statistic as adding a single unit from Group 2. It is clear from these two
panels that, in the absence of transformation, one would be forced to consider quadratic
discriminant analysis or nonparametric procedures.

Table 6. Full Data. Order of inclusion of observations for balanced forward search with λR = (−0.5, 1,
−0.5, 1, 0, 0)T

Step (m) 184 185 186 187 188 189 190 191 192 193 194
Unit Included 156 101 117 155 95 27 140 118 53 130 78
Group 2 1 1 2 1 1 2 1 1 2 1
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Figure 19. Large muscular dystrophy dataset: (a) Mahalanobis distances from a balanced search on untransformed
data—the difference in variance in the two groups is evident; (b) determinant of the estimated common covariance
matrix—the zig-zag pattern is caused by the constraint imposed by balance; (c) distances as for (a), but from an
unbalanced search on transformed data—the outliers are now revealed; (d) covariance matrix as in (b), but now
the data have been transformed and there is no longer an effect of different variances.

The other half of the plot is for a search using our transformation λR. The contrast with
Figure 19(a) and Figure 19(b) is fascinating. Figure 19(d) shows the new pooled determinant
monitoring. Now that the data have been transformed this curve has become a straight line.
The initial decrease of this curve in the first steps of the forward search reflects the initial
exchange of units in and out of the subset. As an aid to outlier detection Figure 19(c)
shows the minimum distance monitoring plot now using an unbalanced search. The order
of inclusion of the observations is given in Table 7. The plot shows that, for most of the
search, the transformation has made the variances in the two groups comparable, but that
there are five outliers. For Group 1 observations 118, 53, and 78 are shown to be outlying by
the upward jump in the plot. The two outliers for Group 2 are 130 and 140. One interesting
feature is that these outliers are for subjects with ages between 22 and 39. The inclusion of
the additional 14 units with ages at least 43 has rendered the previous three outliers extreme

Table 7. Full Data. Order of inclusion of observations for unbalanced forward search with λR = (−0.5,
1 , −0.5, 1, 0, 0)T

Step (m) 184 185 186 187 188 189 190 191 192 193 194
Unit Included 117 27 95 156 155 146 118 53 140 130 78
Group 1 1 1 2 2 2 1 1 2 2 1
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Table 8. Dystrophy Data, large set (194 observations). Results for discrimination using transformed
and untransformed observations: λR =(−0.5, 1, −0.5, 1, 0, 0)T: n = 189, observations 53,
78, 118, 130, and 140 deleted

Overall misclassification rates

n = 194 n = 189

Transformed data 0.132 0.119
Untransformed data 0.170 0.166
Percentage of units improved 72.7 78.3

Tests of equality of covariance matrices

n = 194 n = 189

Untransformed data 605.6 602.9
Transformed data 48.059 51.401

but not highly atypical. We now consider the effect of transformations and outlier detection
on the properties of the discriminant analyses.

We compare all 194 observations and the 189 observations left after outlier detection,
both on the original and on the transformed scales. Table 8, to be compared with Table 5,
shows the overall misclassification probabilities for the four analyses. The general difference
between the two tables is that, with more observations used in estimation, the overall rates
have gone down. The highest average probability of misclassification now is 0.170 for the
original data, dropping to 0.119 for the transformed data without the outliers, a 43% increase
in misclassification from failure to use the transformation. The percentage of units for which
the probability of misclassification decreases because of the transformation is around 75%
and is slightly increased when the outliers are removed.

The table also gives the results of the test for equality of covariances. It is clear from the
table, as it was from the figures, that the transformation has an enormous effect in improving
the equality of the variances of the two groups, although, with the 99% point of χ2

21 being
38.93, equality has not quite been obtained.

The final table gives information on the discriminant function. We list the coefficients
of the standardized canonical eigenvector in Table 9. Apart from y1 and y2, age and month,
the other four variables are serum markers: y3 and y4 are inexpensive to measure, y5 and y6

Table 9. Comparison of the Coefficients of the Canonical Eigenvector Using Transformed and Untrans-
formed Observations

Elements of standardized AGE M CK H LD PK
canonical eigenvector y1 y2 y3 y4 y5 y6

Untransformed data
(n = 194) 0.593 0.001 0.160 0.319 0.304 0.488

Transformed data
(n = 194) 0.490 −0.052 0.582 −0.387 −0.250 −0.276

Transformed data
(n = 189) 0.542 −0.073 0.650 −0.310 −0.202 −0.211
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are expensive to measure. For the untransformed data the inexpensive variables are second
and fourth in importance among the markers whereas, after transformation, they are first
and second. Removal of the outliers further increases the weighting on y3 and y4. There
is thus an indication that use of the transformed data could lead to the development of a
cheaper medical test.

5. CONCLUSIONS

This article applies a form of the forward search in which diagnostic quantities are
calculated and plotted at every stage to the calculation of estimates and score tests for
multivariate transformations. For this we have had to invent a new systematic method of
diagnostic searching to find our transformation estimator λR. We have then applied the new
methodology to discriminant analysis. The examples show the power of our method in the
presence of multiple outliers. We note an affinity with the results of Box and Cox (1964)
who found that a transformation in regression often not only improved the normality of
the errors but led to a simpler additive systematic model. Likewise we have found that our
multivariate transformation not only leads to a more symmetrical distribution of the data,
it also leads to the conditions of near equality of covariance matrices under which linear
discriminant analysis can be applied.

[Received March 2000. Revised October 2000.]
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