
B. Supplement to “A Parametric Framework for the
Comparison of Methods of Very Robust Regression”
by Riani, Atkinson and Perrotta

There are three subsections. In the first we give a second motivating example. The
second and third are expanded versions of our analyses of Examples 2 and 3 in
the paper. The numbering of the figures continues that of the paper.

B1. Clustered Outliers

We now present a numerical example in which there are appreciable and informa-
tive differences between the behaviour of the five estimators. This example is a
special case of the simulation results of§5 that serves to illustrate the need for a
general structure for the design of these experiments.
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Figure 14: Regression data with clustered outliers simulated from (B1). Reading
across:◦ simulated regression data and outliers +; fitted FS line and outliers +;
LTS, reweighted LTS, S and MM estimators

There are 100 regression observations from the modelyi = 10 + 3xi + 10Zi,

whereZi,∼ N (0, 1) and the independentxi ∼ U(0, 10). The contamination
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comes from a bivariate normal distribution, with meanµ and varianceΣ, with

µ =

(

2.5
12.5

)

and Σ =

(

20 2
2 20

)

, (B1)

where the first component corresponds to the response.
For the moment we consider the results of just two simulations, chosen to

illuminate the properties of the different estimation procedures. The top-left hand
panel in Figure 14 shows the 100 regression data plotted as circles together with
the 30 outliers, plotted as crosses. These form an elliptical group of observations
below and to the right of the regression data. The other panels show the robust
regression lines and outliers identified by the various robust analyses.
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Figure 15: Second set of regression data with clustered outliers simulated from
(B1). Reading across:◦ simulated regression data and outliers +; fitted FS line
and outliers +; LTS, reweighted LTS, S and MM estimators

The top right-hand panel shows the FS line, which has a slope of 2.76, slightly
less than the value of 3 of the data. Virtually all the outliers are identified. The
middle panel of the first column of the plot shows the LTS output. Here the line is
close to that from the FS with a slope of 2.85. However, the plot shows that only
one outlier is identified. This low power for outlier identification arises from the
value of consistency factor needed to rescale the estimate of σ2 when half the data
are trimmed and the Bonferroni correction needed to scale the outlier test to have
correct size. These procedures do not affect the propertiesof the LTS parameter
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estimates. However, they do affect the reweighted least squares fit in the adjacent
panel, which has a negative slope of−0.39. Something similar happens with the
S estimator in the bottom left-hand panel which has a slope of3.07. However, the
MM modification leads to a negative slope of−0.69.

The second simulation of the same scenario is in Figure 15. Now the FS line
has a slope of 2.75 whereas all other methods provide fits witha negative slopes,
respectively−1.40, −0.53, −1.00 and−0.69. However, the FS is not uniformly
best over repeated simulations. In some simulations it provides a fitted line with
a negative slope whereas LTS has a positive slope. In some other simulations all
lines can have similar positive, or negative, slopes.

Clearly there is appreciable variability in the estimates produced when the
outliers are so close to the main body of the data. In order to discern underlying
properties we need to look at the distribution of the estimates of slope, which we
will summarize by means and variances. We also need to formalize how far the
outliers lie from the main data so that we can study how the properties depend on
this distance.
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B2. Example 2
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Figure 16: Example 2. Simulated data sets withn1 = 100 andn2 = 20 for four
values ofλ. As λ increases observations fromM2 become close to those from
M1 and then become remote again. The parallelogram defines the region for the
empirical overlapping index

As a second example we stay with a single explanatory variable but now
choose a trajectory forλ such thatθ0

1
6= θ1, so that most of the observations

y2 are outlying. Figure 16 shows scatterplots of typical samples for four values
of λ. In the first, forλ = 1.5, there is a set of horizontal outliers, which can
be expected not appreciably to affect the estimate of slope.As λ increases the
observations fromM2 rise above those fromM1, generating increasingly remote
vertical outliers.
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Figure 17: Example 2. Theoretical and empirical overlapping indices and Maha-
lanobis distance ofM1 from M2.

The difference between this example and Example 1 is made clear in the plot
of the measures of overlap in Figure 17. The theoretical overlapping index has
a value close to one as, for lower values ofλ, observations fromM2 have a high
probability of lying inside the strip aroundM1. However, the empirical index has a
lower value since, as the first panel of Figure 16 showed, few of these observations
fall within X . For larger values ofλ both indices have values close to zero. Since
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the centres of the two populations are never identical, the minimum value of the
squared Mahalanobis distance is greater than zero.
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Figure 18: Example 2. Partial sums overΛ of simulated squared bias and variance
of the five estimators. Left-hand panels squared bias, righthand panels variance.
Top lineα̂, bottom lineβ̂.

The behaviour of the five estimators for this new situation issummarized in
the partial sum plots of Figure 8. The plots of variances are simply interpreted: S
and LTS have high variance for bothα andβ over the whole range ofλ with MM
and LTSr having low values which are slightly less than that of FS.

The comparison of biases is less straightforward. The scatterplots of Figure 7
suggest that the two populations should be adequately separated by the timeλ =
4. For lower values ofλ, S and LTS have similar higher biases forβ. The biases
for α do not show much difference for lower values ofλ. In the right-hand halves
of the plots in Figure 8, withλ > 4, the two populations are more separated. The
plots of bias show that S and LTS provide unbiased estimates (horizontal plots)
for smaller values ofλ than does MM. The LTSr estimates are not unbiased, even
for the largest values ofλ. The FS has excellent properties; it has the lowest bias
for both parameters and a variance which is close to those from MM and LTSr.

To conclude the analysis of the second example we look at the plot of average
power in Figure 19. As in Figure 6, FS has the highest power andLTSr the lowest,
but now the difference between FS and the other rules is much greater. S and MM
have indistinguishable performances with LTS closer to that of LTSr.
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Figure 19: Example 2.Simulated average power of the five procedures overΛ
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B3. Example 3
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Figure 20: Example 3. Simulated data sets with five explanatory variables,n1 =
200 and n2 = 60 for five values ofλ. As λ increases observations fromM2

“pass through” those fromM1, although the centres never coincide. Each row
corresponds to one value ofλ. The successive columns are for the variousxj ,
j = 1, . . . , 5

Our final example, which we treat more briefly, has five explanatory variables
(p = 6). Typical scatterplots ofy against eachx are shown in Figure 20 for this
larger example, withn1 = 200 andn2 = 60. As λ increases from−1 to 2.6
the outliers “rise through” the central observations, a feature more visible in the
coloured pdf version of the paper. However, sinced 6= 0, the centres of the two
distributions are never identical. Unlike our other two examples, this one does
not include outliers at leverage points, so that the differences in behaviour of the
methods are, to some extent, reduced.

We summarize the behaviour of the five estimators in the partial sum of vari-
ance and bias plots of Figure 21. With five explanatory variables the major con-
tribution to the mean squared error of the parameter estimates comes fromβ, so
we only consider these values. With independentxi the bias and variance are the
sums of those for the individual components. The most obvious feature of the plot
is the poor behaviour of LTS. LTSr and S have medium behaviourfor bias and
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Figure 21: Example 3. Partial sums overΛ of simulated squared bias and vari-
ance of the five estimators. Left-hand panel squared bias forβ̂, right hand panel
variance.

variance, with the order reversed for the two properties, while MM and FS have
the same, lowest values for bias and similar values for variance untilλ = 1 when
that for FS increases, although staying below that for S. Unlike the other two ex-
amples, the relative behaviour of the estimators is little affected by the value ofλ,
a reflection of the stability of the outlier pattern overΛ. Of course, the magnitude
of the outliers is largest for extreme values, but leverage points are not introduced
or removed.
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Figure 22: Example 3. Simulated average power of the five procedures overΛ
with an inset zoom of the central part of the figure

The plot of average power is in Figure 22. As in the other plotsof average
power FS has the highest power and LTSr the least. The other three estimators
have very similar properties to each other. However, in assessing power we need
to be sure that we are comparing tests with similar sizes. Thezoom in the centre
of the plot for values ofλ close to one shows that we are not, with FS and LTSr
having the smallest values. For accurate comparisons we need to scale the other
three tests downwards, which will reduce the curves below the plotted values.
However, even whenλ = 1 the outliers are still present and, sinced 6= 0, we are
not exactly looking at the null distribution of the test statistics.
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