B. Supplement to “A Parametric Framework for the
Comparison of Methods of Very Robust Regression”
by Riani, Atkinson and Perrotta

There are three subsections. In the first we give a secondatiag example. The
second and third are expanded versions of our analyses offiea 2 and 3 in
the paper. The numbering of the figures continues that ofapeip

B1. Clustered Outliers

We now present a numerical example in which there are agiecand informa-
tive differences between the behaviour of the five estinsatdhis example is a
special case of the simulation resultsséfthat serves to illustrate the need for a
general structure for the design of these experiments.
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Figure 14: Regression data with clustered outliers siredlfiom (B1). Reading
across:o simulated regression data and outliers +; fitted FS line artlieos +;
LTS, reweighted LTS, S and MM estimators

There are 100 regression observations from the mgdel 10 + 3x; + 107;,
where Z;, ~ N(0,1) and the independent; ~ U(0,10). The contamination



comes from a bivariate normal distribution, with mgaand variance:, with
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where the first component corresponds to the response.

For the moment we consider the results of just two simulatiamosen to
illuminate the properties of the different estimation prdares. The top-left hand
panel in Figure 14 shows the 100 regression data plotted@esctogether with
the 30 outliers, plotted as crosses. These form an elligircaip of observations
below and to the right of the regression data. The other pastew the robust
regression lines and outliers identified by the various sbhnalyses.
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Figure 15: Second set of regression data with clusteredeocaifimulated from
(Bl1). Reading across: simulated regression data and outliers +; fitted FS line
and outliers +; LTS, reweighted LTS, S and MM estimators

The top right-hand panel shows the FS line, which has a slbp&6, slightly
less than the value of 3 of the data. Virtually all the oudliare identified. The
middle panel of the first column of the plot shows the LTS otitplere the line is
close to that from the FS with a slope of 2.85. However, thé gthows that only
one outlier is identified. This low power for outlier ident#ition arises from the
value of consistency factor needed to rescale the estirhatewehen half the data
are trimmed and the Bonferroni correction needed to scaledtitlier test to have
correct size. These procedures do not affect the propertigse LTS parameter
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estimates. However, they do affect the reweighted leastregdit in the adjacent
panel, which has a negative slope-e9.39. Something similar happens with the
S estimator in the bottom left-hand panel which has a slo@e0f. However, the
MM modification leads to a negative slope-66.69.

The second simulation of the same scenario is in Figure 15 tNe FS line
has a slope of 2.75 whereas all other methods provide fitsamitbgative slopes,
respectively—1.40, —0.53, —1.00 and—0.69. However, the FS is not uniformly
best over repeated simulations. In some simulations itigesva fitted line with
a negative slope whereas LTS has a positive slope. In soree sithulations all
lines can have similar positive, or negative, slopes.

Clearly there is appreciable variability in the estimatesdpiced when the
outliers are so close to the main body of the data. In orderstwedn underlying
properties we need to look at the distribution of the estawaif slope, which we
will summarize by means and variances. We also need to faenabw far the
outliers lie from the main data so that we can study how thegmges depend on
this distance.



B2. Example 2
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Figure 16: Example 2. Simulated data sets with= 100 andn, = 20 for four
values of\. As )\ increases observations frofd, become close to those from
M, and then become remote again. The parallelogram definesgianrfor the
empirical overlapping index

As a second example we stay with a single explanatory varibbt now
choose a trajectory fok such thatd? # 6;, so that most of the observations
yo are outlying. Figure 16 shows scatterplots of typical sasbr four values
of A\. In the first, forA = 1.5, there is a set of horizontal outliers, which can
be expected not appreciably to affect the estimate of slée) increases the
observations from\/; rise above those fromy/;, generating increasingly remote
vertical outliers.
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Figure 17: Example 2. Theoretical and empirical overlagpidices and Maha-
lanobis distance a#/; from M.

The difference between this example and Example 1 is made icl¢he plot
of the measures of overlap in Figure 17. The theoreticallapping index has
a value close to one as, for lower values\gbbservations fromi/, have a high
probability of lying inside the strip arountd;. However, the empirical index has a
lower value since, as the first panel of Figure 16 showed, féhvase observations
fall within X’. For larger values ok both indices have values close to zero. Since
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the centres of the two populations are never identical, timenmum value of the
squared Mahalanobis distance is greater than zero.
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Figure 18: Example 2. Partial sums oveof simulated squared bias and variance
of the five estimators. Left-hand panels squared bias, hightl panels variance.
Top linea, bottom lineg.

The behaviour of the five estimators for this new situatiosusimarized in
the partial sum plots of Figure 8. The plots of variances anply interpreted: S
and LTS have high variance for bathand over the whole range of with MM
and LTSr having low values which are slightly less than tH&t%.

The comparison of biases is less straightforward. Theexpddits of Figure 7
suggest that the two populations should be adequatelyatepdny the time\ =
4. For lower values of\, S and LTS have similar higher biases farThe biases
for a do not show much difference for lower values)ofin the right-hand halves
of the plots in Figure 8, with > 4, the two populations are more separated. The
plots of bias show that S and LTS provide unbiased estimataizpntal plots)
for smaller values of than does MM. The LTSr estimates are not unbiased, even
for the largest values of. The FS has excellent properties; it has the lowest bias
for both parameters and a variance which is close to those kit and LTSr.

To conclude the analysis of the second example we look atith@faverage
power in Figure 19. As in Figure 6, FS has the highest powetLafd the lowest,
but now the difference between FS and the other rules is meatay. S and MM
have indistinguishable performances with LTS closer to oh&TSr.
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Figure 19: Example 2.Simulated average power of the fivequhoes ove



B3. Example 3
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Figure 20: Example 3. Simulated data sets with five explagpatariablesyn, =

200 andny, = 60 for five values of\. As ) increases observations frof,
“pass through” those fromi/;, although the centres never coincide. Each row
corresponds to one value af The successive columns are for the variays
j=1,...,5

Our final example, which we treat more briefly, has five expiairyavariables
(p = 6). Typical scatterplots of against eachr are shown in Figure 20 for this
larger example, witlh; = 200 andn, = 60. As )\ increases from-1 to 2.6
the outliers “rise through” the central observations, adeamore visible in the
coloured pdf version of the paper. However, sidcg 0, the centres of the two
distributions are never identical. Unlike our other two mydes, this one does
not include outliers at leverage points, so that the diffees in behaviour of the
methods are, to some extent, reduced.

We summarize the behaviour of the five estimators in theglatim of vari-
ance and bias plots of Figure 21. With five explanatory vdemkthe major con-
tribution to the mean squared error of the parameter estsr@imes fronw, so
we only consider these values. With independerihe bias and variance are the
sums of those for the individual components. The most ols/ieature of the plot
is the poor behaviour of LTS. LTSr and S have medium behavimubias and
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Figure 21: Example 3. Partial sums oveof simulated squared bias and vari-
ance of the five estimators. Left-hand panel squared bias,faght hand panel
variance.

variance, with the order reversed for the two propertieslesiM and FS have
the same, lowest values for bias and similar values for magaintil\ = 1 when
that for FS increases, although staying below that for Sikdrihe other two ex-
amples, the relative behaviour of the estimators is litfiecéed by the value of,

a reflection of the stability of the outlier pattern overOf course, the magnitude
of the outliers is largest for extreme values, but leveragetp are not introduced
or removed.

Average power
o o o
&)

T

= |—Fs

- ='LTS
I LTSr |

-e-S
—v—MM

0.2~

0.1

Figure 22: Example 3. Simulated average power of the fivequoes over\
with an inset zoom of the central part of the figure

The plot of average power is in Figure 22. As in the other ptftaverage
power FS has the highest power and LTSr the least. The othsz #stimators
have very similar properties to each other. However, insssg power we need
to be sure that we are comparing tests with similar sizes.Zében in the centre
of the plot for values of\ close to one shows that we are not, with FS and LTSr
having the smallest values. For accurate comparisons wetoesxale the other
three tests downwards, which will reduce the curves bel@vpiotted values.
However, even when = 1 the outliers are still present and, sinte 0, we are
not exactly looking at the null distribution of the test &acts.



