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Riassunto: Questo lavoro mostra le potenzialità di un approccio robusto fondato sulla
Forward Search per l’adattamento di una mistura di modelli di regressione. Il metodo è
motivato dai problemi classificatori che sorgono nel tentativo di identificare frodi fiscali
che coinvolgono aziende operanti all’interno dell’UnioneEuropea. La struttura dei dati è
resa complessa dai meccanismi economici che governano le transazioni, dalla necessità di
operare in modo automatico su migliaia di mercati differenti e dalla presenza di numerosi
outliers. Dal punto di vista statistico, l’approccio proposto consente di coniugare tecniche
esplorative e stumenti inferenziali per la scelta del numero di componenti della mistura e
per l’identificazione delle situazioni anomale.
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1. Introduction

The protection of the budget of the European Community against fraud is a standing
obligation for the Commission and the Member States. The successful protection of
the financial interests of the Community is of paramount importance. Fraud against
revenues and expenditures of the Community has an impact on the successful conduction
of practically all Community activities. As a result of an enduring collaboration with the
European Anti-fraud Office, the European Commission’s Joint Research Centre routinely
collects data sets including millions of trade flows groupedin a large number of small
to moderate size samples. These data samples are then analyzed with the purpose
of detecting anomalies of various kinds (e.g. recording errors), specific market price
dynamics (e.g. discounts in trading big quantities of product) and cases of unfair
competition or fraud. The statistically relevant cases arepresented for evaluation and
feed-back to subject matter experts of the Anti-fraud Officeand of its partner services in
the Member States.

The statistical analysis of such data shows several levels of complexity. One basic issue
is that any diagnostic method must be applied sequentially to millions of records and must
be reliable on all of them. Reliability should be measured both in terms of sensitivity, i.e.
the number of false positives produced by the method, and of specificity, i.e. the ability
of detecting truly anomalous transactions. Satisfactory performance on these grounds
translates into high rewards, when frauds are correctly detected, and reduced efforts by the
anti-fraud staff, if only few non-anomalous transactions are examined. Both features are
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crucial for the anti-fraud subject matter experts. They askfor the adoption of techniques
that can combine high power for outlier detection with consistency when the data are
not contaminated. It is also necessary to summarize the outlyingness of each observation
through a single measure, typically ap-value from a test statistic, to guarantee routine
application of the methods. Hundreds of diagnostic tests must then be computed within
thousands of samples and a very severe problem of multiplicity occurs.

The structure of the data adds further complexity to the analysis. The typical pattern of
trade flows shows aggregation of points around an unknown number of regression lines
whose parameters must be estimated. One major problem is that the regression lines are
not well separated. Their degree of overlapping depends on the economic features of the
markets where the flows originate. In addition, this archetypal mixture of linear models is
heavily contaminated by observations that do not follow thegeneral pattern. Outliers may
be isolated, e.g. when produced by recording errors, or clustered, when they represent a
systematic behaviour. Perhaps the most useful informationfor fraud detection purposes
comes from outliers that cluster themselves around an “anomalous” regression line. Also
inliers that do not follow any specific regression structureand are intermediate between
different lines may be of interest, especially if they represent economically important
transactions. Figure 1 provides an example of such a complexdata structure. The goals
of the statistical analysis can be summarized as follows:

1. provide an estimate of the unknown number of regression lines;
2. estimate the parameters of these lines and identify the observations clustering

around each of them;
3. identify clusters of anomalous transactions, if any, andinliers that do not belong to

any regression line.

All the three steps must be performed robustly, to ensure that multiple outliers do not
mask each other. Our proposal is to perform them through the Forward Search (FS), a
powerful general method for detecting unidentified subsetsand masked outliers and for
determining their effect on models fitted to the data (Atkinson and Riani, 2000; Atkinson
et al., 2004). Unlike most robust methods, in the FS the amount of trimming is not fixed
in advance but is chosen conditionally on the data. Many subsets of the data are fitted
in sequence and a whole series of subsets is explored. As the subset size increases,
the method of fitting moves from very robust to highly efficient likelihood methods.
The FS thus provides a data dependent compromise between robustness and statistical
efficiency. In§4 we show how well the FS is able to describe the complex structure of
the data pictured in Figure 1. Our assumptions are comparable to those underpinning
latent class and model-based clustering methods (Bishop, 2006), but our results are not
affected by outliers and our output is richer. Furthermore,we apply distributional results
for precise identification of the outliers and of the clusters. These distributional results
are particularly appropriate for the simultaneous testingscenario implied by sequential
screening of millions of records.

2. Essentials of the Forward Search

The basic idea of the Forward Search is to start from a small, robustly chosen, subset
of the data and to fit subsets of increasing size, in such a way that outliers and subsets of



data not following the general structure are clearly revealed by diagnostic monitoring. The
rationale is that if there is only one population the journeyfrom fitting a few observations
to all will be uneventful. But if we have outliers or groups there will be a point where the
stable progression of fits is interrupted. Our tools for outlier detection and clustering in
regression are then developed from forward plots of residuals.

In the general regression framework we have one univariate responseY and v
explanatory variablesX1, . . . , Xv satisfying

E(yi) = β0 + β1xi1 + · · ·βv + xiv (1)

under the usual assumptions. Suppose that a sampleS(n) of n observations onY and
on the explanatory variables is available. Standard least-squares theory focuses on̂β, the
estimate of the(v + 1)-dimensional parameter vectorβ = (β0, β1, · · · , βv)

T , whereT

denotes transpose, computed by fitting the regression hyperplane to all the observations
in S(n). On the contrary, in the FS we are interested in thesequence of estimators
β̂(m0), β̂(m0 + 1), . . . , β̂(n), obtained by fitting the regression hyperplane to subsamples
S(m) ⊆ S(n) of m observations, withm = m0, . . . , n. Each subsampleS(m + 1) in this
sequence is obtained by looking at then squared regression residuals

e2

i
(m) = [yi − {β̂0(m) + β̂1(m)xi1 + · · · + β̂v(m)xiv}]

2 i = 1, · · · , n (2)

computed from the estimate ofβ at stepm. S(m + 1) is defined as the subset of
observations corresponding to them + 1 smallest squared residualse2

i
(m). The search

starts from an outlier-free subset ofm0 observations. Usuallym0 = v + 1, with S(m0)
chosen through the least median of squares criterion of Rousseeuw and Leroy (1987).

To detect outliers we examine the minimum absolute deletionresidual amongst
observations not in the subset

rmin(m) = min
|ei(m)|

s(m)
√

[1 + xT

i
{XT (m)X(m)}−1xi]

for i /∈ S(m), (3)

wheres(m) is the square root of the estimate of the residual varianceσ2 = E{yi−E(yi)}
2

computed from the observations inS(m), xi = (xi1, . . . , xiv)
T is theith row of the design

matrix X andX(m) is the block ofX with rows indexed by the units inS(m). If the
observation for which (3) is computed does not follow the regression model, the modulus
of its deletion residual will be large if compared to the maximum amongst observations
belonging to the subset. At that step all other observationsnot in the subset will, by
definition, have absolute deletion residuals greater thanrmin(m) and will therefore also
be outliers. We call the graph ofrmin(m) for m = m0, . . . , n a forward plot.

In order to provide sensitive inferences it is necessary to augment the forward plot of
rmin(m) with envelopes of its distribution. Detailed examples of such envelopes and of
their use in the FS with moderate sized regression data sets are presented by Atkinson
and Riani (2006), while Atkinson and Riani (2007) consider the multivariate framework.
For small data sets we can use envelopes from bootstrap simulations to determine the
threshold of our statistic during the search. For larger data sets we can instead use
polynomial approximations. Theoretical arguments not involving simulation, which are
increasingly attractive asn grows, are provided by Rianiet al. (2007) together with a
formal test that allows for simultaneity in outlier detection. Therefore, the procedure of
Riani et al. (2007) is a particularly suitable inferential framework for detecting multiple
outliers in complex data sets such as those described in thiswork.



3. Mixtures of Regression Hyperplanes

We now suppose that the observations come fromg regressions models (1) with different
and unknown parameter values. Our aim is to allocate each unit to its true model and to
estimate the corresponding parameters. Also the numberg of component models is not
known in advance. Clusterwise regression is the traditional technique for achieving this
goal (Späth, 1985). A more modern probabilistic approach is to fit the joint density of the
n observations as a mixture of regressions models (Bishop, 2006,§14.5; Van Aelstet al.,
2006). However, both methods may suffer from the presence ofoutliers and/or strongly
overlapping clusters as shown, e.g., by Neykovet al. (2007). Another shortcoming of
these methods is that they do not provide formal tests to justify the need of an additional
component. Our proposal is to use the Forward Search for fitting theg components of the
regression mixture. Our forward algorithm is summarized asfollows.

1. Letn∗(j) be the size of the sample to be analysed at iterationj. At the first iteration
n∗(1) = n.

2. The FS for regression is applied to thesen∗(j) observations. The search is
initialized robustly through the least median of squares criterion and progresses
using the squared regression residualse2

i
(m), i = 1, . . . , n∗(j).

3. At each stepm of the FS, we test the null hypothesis that there are no outliers in the
n∗(j) observations. The test is performed using (3) and the technique developed by
Riani et al. (2007) to keep simultaneity into account.

4. If the sequence of tests performed in step 3 does not lead tothe identification of
any outlier, the sample ofn∗(j) observations is declared to be homogeneous and
the algorithm stops by fitting the regression model (1) to this sample. Otherwise go
to step 5.

5. Letm∗ be the step of the FS in which the null hypothesis of no outliers is rejected by
the sequence of tests of step 3. Then the observations inS(m∗) identify one mixture
component, i.e. one cluster ofm∗ observations following (1). Fit the regression
model (1) to this cluster.

6. Remove the cluster identified in step 5. Return to step 1 with a reduced sample size,
by settingn∗(j + 1) = n∗(j) − m∗.

The algorithm leads to the identification ofg regression models, one for each iteration.
The tests performed in step 3 ensure that each component of the mixture is fitted to
a homogeneous subset. The tests are robust and are not influenced by outliers or by
observations falling between the groups. Indeed, such observations, which are relevant
for fraud detection, are clearly revealed by our forward diagnostic plots during the search.
Note also that the method does not force all observations to be firmly clustered into one of
theg components. Borderline units are recognized as intermediate between clusters and
can thus be inspected separately.

4. Application to Trade Data

The EU has a common commercial policy which aims at protecting European businesses
from obstacles to trade(1). The trade needs to be monitored and cases of unfair competition

(1) http://europa.eu/pol/comm



and fraud should be detected as early as possible. This can beachieved by appropriate
analysis of trade data. Figure 1 is an example of trade dataset: the quantity (x axis) and
the value (y axis) of the importations of a specific technological product into a Member
State (MS) of the European Union (EU) are plotted. The commercial activity is between
importers in the MS and exporters in non-EU Member Countries.
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Figure 1: An example of external trade dataset: quantities (in kilograms) and values (in
thousands of euros) of 4719 import transactions into a Member State of the European
Union for a technological product, in a period of one year.

The observations appear roughly distributed along three main different lines departing
from the origin of the coordinate axes. One group of observations extends mostly over
the upper part of plot, a second group over the central part and a third over the lower
part. We will refer to these three informal groups as upper, central and lower groups. The
dataset is formed by 4719 observations. Like for the majority of similar trade datasets
that we have analysed so far, observations are rather concentrated towards the origin. To
appreciate this fact we can compute the Gini coefficients forthe quantity and the values
(they are respectively 0.63 and 0.67) or more intuitively wecan observe that more than
50% of the transactions (precisely 2669) are below 30 Kg weight and cover only 10% of
the total trade volume considered in this dataset.

We used the FS to cluster automatically the observations, inorder to estimate the
import price of the transactions in the respective groups. It is up to subject matter experts
to judge the price estimates, eventually examine the transactions in each cluster and draw
conclusions. Here, we will only check the homogeneity of thetransactions throughout
the clusters based on the country of origin of the goods, although the rich structure of this
dataset allows different and more sophisticated evaluation criteria. We have conducted
similar analyses elsewhere (e.g. Rianiet al., 2008) on somewhat less complex data, where
flows consisting of monthly aggregations by Member State were available.

The iterative application of the procedure described in Section 3 has produced ten
mixture components which are shown in Figure 2. Components 1, 2, 3, 4 and 6 (‘+’
symbols) partially overlap and capture well most of the central group of observations.
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Mixture components. From the top:

component 9, fit on 173 obs
component 10, fit on 70 obs
component 8, fit on 618 obs
component 5, fit on 118 obs
component 7, fit on 401 obs
48 residual observations
3291 observations in components 1, 2, 3, 4, 6

c9

c10

c8

c5

c7

Figure 2: Components found by the FS. The regression lines of components 1, 2, 3, 4 and
6 almost overlap and are therefore omitted.

Component 8 (‘·’ symbols) extends over the central group, but it is much moredispersed.
Components 5 and 7 are rather aligned and, together, cover most of the lower group.
Finally, components 9 and 10 cover rather well the observations of the upper group. The
“residual” observations (‘◦’ symbols) that are not assigned by the FS to any cluster,
are very dispersed and could be reassigned to the existing tentative clusters with a
confirmation procedure.

component average price #obs(Q > 30) #obs ρ2 slope intercept
1 2,036.23 99 1432 1 2032.7 66.6
2 2,122.50 146 570 0.9995 2070 2877.2
3 1,943.40 152 564 0.9995 2010.4 -3217.7
4 2,279.88 269 451 0.9985 2121.1 9372.7
5 1,517.94 73 118 0.995 797 48857.7
6 1,829.87 141 274 0.999 2001.1 -11821.9
7 952.98 317 401 0.853 777.4 17916.1
8 2,987.02 559 618 0.7825 1486.1 106730
9 4,876.89 173 173 0.9745 4708.9 17137.7

10 4,060.60 70 70 0.7125 1930.3 251326.5

Table 1: Basic statistics on the components.

Table 1 gives a few basic statistics for the components. The average price
(value/weight) is computed excluding the transactions below 30 Kg, because in this
context they are operationally irrelevant and, at some extent, subject to approximations
due to the Customs data collection procedures. These pricesconfirm that, for operational
purposes, components 1, 2, 3, 4 and 6 could be merged into a single group. As
expected, the first six components are highly homogeneous and capture observations



densely concentrated. The corresponding estimate of the squared correlation coefficient
ρ2 is very close to 1. The progression of this estimate during the searches is shown in
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Figure 3: Forward plots of the estimates of ρ2 for components 1, 2, 3, 4, and 6 (on the
left) and for components 5, 7, 8, 9, 10 (on the right).

Figure 3. Figure 4 also gives the progression of the slopes for the components of bigger
operational relevance, namely those which correspond to the smallest and the highest
prices (components 5, 7 and 9).
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Figure 4: Forward plots of the estimated slopes for components 5,7 and 9.

We may get insights from the mixture components, for anti-fraud or for a simple
academic exploration of the European trade dynamic for the product in question, by
focusing on the country of origin of the goods. The cheapest goods, those in components
5 and 7, originate mainly from a single third country (Malaysia, MY). The most expensive
goods (component 9) have origin mainly in Korea (KR). KR is also the dominant
exporting country in component 10 (on the other hand the average prices for components
9 and 10 are comparable). The biggest exporting country is China (CN), which mainly
appears in the central components (1, 2, 3, 4 and 6). In some cases the FS components
also suggest unexpected patterns. For example, by looking at the date of the transactions



in components 5 and 7, we note that gradually the price of imports from MY raised from
a lower to a higher value. Such patterns are difficult to detect using alternative techniques.
In other applications the identification of clusters of anomalous transactions proved to be
an important tool for directing the attention of anti-fraudservices to possible instances of
unfair competition and fraud, such as evasion of import duties (Rianiet al., 2008).

5. Discussion

With complex data sets such as those considered in this papermany additional things
can be tried. For instance, we could have worked with log-transformed data in§4, or we
could have forced the fitted regression lines to pass throughthe origin of Figure 1. Due
to lack of space in this article we have been unable to report all these variations. Due to
similar reasons we did not have space to show the comparison of the suggested procedure
with other methods. However, the message of the article is clear: even in presence of
highly overlapping groups with multiple masked outliers, the application of the forward
search provides the user with a plethora of information about the data under analysis and
produces a reasonable tentative classification. Finally, it is worth noting that the suggested
approach does not require optimization routines, providesthe user with a simple way of
determining the number of clusters and does not force all units to be firmly clustered.
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