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Abstract We tackle the problem of obtaining the consistency factors of robust
S-estimators of location and scale both in regression and multivariate analysis. We
provide theoretical results, proving new formulae for their calculation and shedding
light on the relationship between these factors and important statistical properties of
S-estimators. We also give computational advances, suggesting efficient procedures
so that hardly any time is lost for their calculation when computing S-estimates. In
addition, when the purpose is to fix the efficiency of the scale estimator, we are able
to quantify to what extent the approximate algorithms which are currently available
provide an acceptable solution, and when it is necessary to resort to the exact formu-
lae. Finally, even if this paper concentrates on S-estimates and Tukey’s Biweight and
optimal loss functions, the main results can be easily extended to calculate the tuning
consistency factors for other popular loss function and other robust estimators.

Keywords Asymptotic variance · Biweight function · Breakdown point · Elliptical
truncation · Mahalanobis distance · Robust regression
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1 Introduction

The main goal of robust statistics is to obtain methods which are insensitive to devi-
ations from the postulated model for the “good” part of the data. This model typi-
cally involves assumptions about normality or (elliptical) symmetry of the distribution
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which is supposed to generate the data, either in the univariate, regression or multi-
variate case. As a consequence, great effort has been devoted to develop estimators
with a high-breakdown point, which are not affected by the presence of a fraction of
unknown outliers as large as 50 %. See, e.g., Hubert et al. (2008) for a recent overview.

In order to be successfully applied in practice, such high-breakdown estima-
tors must possess sensible statistical properties also when the data are not conta-
minated. For instance, in the multivariate setting that we consider in Sect. 4, let
y1, . . . , yn denote a sample of v-variate observations from the elliptical density
f (y, μ,�) = 1√|�|cgg(d(y, μ,�)), where μ is the mean vector and � is propor-
tional to the covariance matrix (if the first two moments exist), g is the so called radial
density, cg > 0 is a normalizing factor which ensures that f integrates to one and
d(y, μ,�) = (y − μ)′�−1(y − μ) (Paindaveine 2012). Let �̂ = �̂(y1, . . . , yn) be
any affine equivariant estimator of �, such that �̂ → �̂∞ in probability as n → ∞.
It can be shown (Maronna et al. 2006, p. 217) that �̂∞, is proportional to �, i.e.

�̂∞ = κ�, (1)

where κ is a constant. This constant plays a crucial role in inference based on �̂,
because �̂/κ is a consistent estimator of� when all the data come from the postulated
density f (y, μ,�).

Explicit and easily computable formulae for the scaling factor in (1) are available
when �̂ is an affine equivariant estimator whose high-breakdown properties derive
from trimming and yi ∼ Nv(μ,�), with i = 1, 2, . . . , n. In this case,

g(d(y, μ,�)) = e− d(y,μ,�)
2 cg = (2π)−

v
2 . (2)

For example, if �̂ is the minimum covariance determinant (MCD) with asymptotic
breakdown point equal to α and h = [(2[ n+v+1

2 ] − n + 2(n − [ n+v+1
2 ](1 − α))] is the

corresponding coverage, Croux and Haesbroeck (1999) show that at the multivariate
normal model

κ = κh =
Pr
(
χ2
v+2 < χ2

v,h/n

)

h/n
, (3)

where χ2
v,h/n is the h/n quantile of the χ2

v distribution. Related results are obtained by
Liu et al. (1999) in the case of data-depth based estimation of �, by Garcìa-Escudero
and Gordaliza (2005) for a generalized radius process, by Cuesta-Albertos et al. (2008)
under a likelihood approach to trimming, by Riani et al. (2009) for the forward search
estimator of�, by Cerioli (2010) for the reweighted version of the MCD and by Cizek
(2013) for the reweighted least trimmed squares estimator.

In this paper, we deal with robust S-estimators based on a sufficiently smooth
weight function. Their asymptotic behavior is established by Davies (1987) and
Lopuhaä (1989) for multivariate data, and by Rousseeuw and Yohai (1984) and Davies
(1990) in regression. One crucial issue with these estimators is that smoothness of the
weight function prevents from obtaining simple analytic expressions like (3) for their
consistency factors. Instead, the asymptotic behavior of S-estimators is implicitly ruled
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by the features of the chosen weight function, as well as their robustness and efficiency
properties (see, e.g., Rousseeuw and Leroy 1987; Croux et al. 2006).

More explicitly, in the “hard trimming procedures” like MCD, LTS or the forward
search, where each observation receives weight 0 or 1, the number h of observations
having weight equal to 1 determines the breakdown point (bdp), the consistency factor
κ = κh , the variance of the estimator (asvar), and finally its efficiency (given that
eff = asvar−1; see for example Maronna et al. p. 182). Once one of the four factors
h, bdp, asvar or eff is fixed, the values of the other three follow consequently. This
easily explains why it is not possible, in a single step, to achieve a small asymptotic
variance (high efficiency) and 50 % breakdown point simultaneously. In the context
of S-estimation, the pivotal role of h is played by c, the parameter which appears
in the typical ρ,ψ and weight functions of robust statistics, which we define in the
next section [see, e.g., Eqs. (11), (36)]. Sometimes c is called a tuning constant and
more often, as we do in this article, it is directly called the consistency factor for
S-estimators.

Parameter c determines univocally both the breakdown point and the asymptotic
variance of location and covariance estimators. Thus if we decide, for example, to
have a fixed level of efficiency for the S-estimator of the covariance, we automati-
cally determine the efficiency of the location estimator, the consistency factor c, the
breakdown point of the location and covariance estimator.

The implicit nature of the consistency factors of S-estimators has two major conse-
quences. The first one is that it can contribute to hide important statistical relationships,
like the one between robustness and efficiency explored by Croux et al. (2011). The
second consequence is that computation of the required scaling routinely involves
iterative procedures which are considerably more complex and time consuming than
expression (3) for trimmed estimators. The computed constant is then plugged into
further iterative algorithms, such as those of Salibian-Barrera and Yohai (2006) and
Salibian-Barrera et al. (2006), which provide an approximate solution to the nonlinear
optimization problem of S-estimation. Finding simpler formulae for the consistency
factors of S-estimators is thus an important task both from a conceptual and a practi-
cal point of view. Although we restrict to the hypothesis of normally distributed data
like in (2), our approach could be potentially extended to observations from elliptical
distributions.

Our goal in this paper is twofold. First, we prove new formulae for the calculation of
the consistency factors of S-estimators. Our new method of proof is general and could
be applied to any definition of the weight function based on polynomials, although we
restrict ourselves to the case of Tukey’s Biweight and optimal loss function, which
are by far the most common. Our new formulae take advantage of the use of semi-
factorials, do not require the evaluation of the Gamma function and are conceptually
simpler.

They can be interpreted as a natural extension of (3) to the case of S-estimators.
They also open the door to efficient computational procedures, which ensure savings in
computing time over the currently available algorithms. Similar improvements could
be used by alternative popular routines available for robust data analysis.

Our second aim is to use the new formulae to provide a fresh look at the theory
of consistency factors for S-estimators, by shedding light on the relationship between
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these factors and other important statistical properties of the estimators. Specifically,
we provide theoretical results and graphical details relating consistency to robustness
and asymptotic efficiency. Even if these plots could have been obtained using the
traditional old formulae, we argue that so far they have not received sufficient attention.
Finally, when the purpose is to fix the efficiency of the scale (covariance) estimator, we
are also able to quantify to what extent the approximate algorithms which are currently
available (e.g. Todorov and Filzmoser 2009) provide an acceptable solution, and when
it is necessary to resort to the exact formulae. In addition, and perhaps unexpectedly,
we uncover a few interesting relationships between consistency factors and some old
(Tallis 1963) and new (Riani et al. 2009) results.

The outline of the paper is as follows. In Sect. 2 we recall S-estimation in a regression
framework and we define the consistency factor for Tukey’s Biweight function. In
Sect. 3 we find easy expressions to compute this factor in regression and we illustrate
its relationships with other statistical properties of the estimators. The multivariate
case is dealt within Sects. 4 and 5. In Sect. 6 we compare the computational time it
takes to compute the consistency factors using the routines currently downloadable
from Internet with our new implementation. In Sect. 7 we extend the results previously
obtained for the Tukey Biweight loss function to the optimal loss function. In Sect. 8
we introduce a numerical example which shows the need of considering different
levels of breakdown point or different levels of nominal efficiency to understand the
real structure of the data. Some concluding remarks are in Sect. 9.

2 S-estimation in a regression setup

As usual in a regression framework, we define yi to be the response variable, which
is related to the values of a set of p − 1 explanatory variables xi1, . . . , xip−1 by the
relationship

yi = β ′xi + εi i = 1, . . . , n, (4)

where, including an intercept, β ′ = (β0, β1, . . . , βp−1) and xi = (1, xi1, . . . , xip−1)
′.

Let σ 2 = var(εi ), which is assumed to be constant for all i = 1, . . . , n. We also take
the quantities in xi to be fixed and assume that x1, . . . , xn are not collinear. The case
p = 1 corresponds to that of a univariate response without predictors. We call σ the
scale of the distribution of the error term εi , when its density takes the form

σ−1 f
( ε
σ

)
.

The M-estimator of the regression parameters which is scale equivariant (i.e. indepen-
dent of the system of the units) is defined by

β̂M = min
β∈�p

1

n

n∑
i=1

ρ
(ri

s

)
(5)

where ri = yi − β ′xi is the i th residual and ρ is a function with suitable properties
and s is an estimate of σ . We also write ri (β) to emphasize the dependence of ri
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on β. Similarly, we write s = s(r1(β), . . . , rn(β)) for the dispersion measure of the
residuals, which is called the “scale statistic” (see, e.g., Van Aelst and Willems 2011).

Clearly, if we want to keep the M-estimate robust, s should be a robust estimate
too. An M-estimator of scale in (4), say s, is defined to be the solution to the following
equation

1

n

n∑
i=1

ρ
(ri

s

)
= 1

n

n∑
i=1

ρ

(
yi − β ′xi

s

)
= K , (6)

Equation (6) is solved among all (β, σ ) ∈ �p × (0,∞), where 0 < K < sup ρ.
Rousseeuw and Yohai (1984) defined S-estimators by minimization of the dispersion
s of the residuals

β̂S = min
β∈�p

s(r1(β), . . . , rn(β)) (7)

with final scale estimate

σ̂S = s
(

r1(β̂S), . . . , rn(β̂S)
)
.

The dispersion s defined as the solution of Eq. (6). The S-estimates, therefore, can
be thought as self-scaled M-estimates whose scale is estimated simultaneously with
the regression parameters (Yohai 2006). Note, in fact, that when the scale and the
regression estimates are simultaneously estimated, S-estimators for regression also
satisfy (see for example Maronna et al. 2006; p. 131)

β̂S = min
β∈�p

n∑
i=1

ρ
(ri

s

)
. (8)

The estimator of β in (7) is called an S-estimator because it is derived from a scale
statistic in an implicit way. S- and M-estimators for regression can also be extended to
the case of heteroskedastic and time series data; see for example Croux et al. (2006),
Maronna et al. (2006, Ch. 8), Boudt and Croux (2010), and Rieder (2012).

Rousseeuw and Leroy (1987, p. 139) show that if function ρ satisfies the following
conditions:

1. it is symmetric and continuously differentiable, and ρ(0) = 0;
2. there exists a c > 0 such that ρ is strictly increasing on [0, c] and constant on

[c,∞);
3. it is such that

K/ρ(c) = α with 0 < α ≤ 0.5. (9)

then the asymptotic breakdown point of the S-estimator tends to α when n → ∞.
Note that if ρ(c) is normalized in such a way that sup ρ(c) = 1, constant K becomes
exactly equal to the breakdown point of the S-estimator.

It is further assumed that

E�0,1

[
ρ
(ri

s

)]
= K , (10)
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where �0,1 is the cdf of the standard normal distribution, to have a consistent scale
estimate for normally distributed observations.

The most popular choice for the ρ function in (5) and (6) is Tukey’s Biweight
function

ρ(x) =
⎧⎨
⎩

x2

2 − x4

2c2 + x6

6c4 if |x | ≤ c

c2

6 if |x | > c,
(11)

with associated ψ function:

ψ(x) = ρ′(x) =
⎧⎨
⎩

x − 2x3

c2 + x5

c4 = x
{

1 − ( x
c

)2}2
if |x | ≤ c

0 if |x | > c.
(12)

Input x of ρ will be the scaled residuals (in a regression context) or the Mahalanobis
distances (in multivariate analysis).

3 Consistency factors in regression

3.1 Consistency factors given a fixed breakdown point

We consider the case of finding c, once the breakdown point has been fixed. We work
under the assumption of normally distributed observations which are a special case of
the elliptical family with g given by (2). This assumption is the standard null model
for the bulk of the data in the literature on robust estimation.

Conditions (9) and (10) imply that c for Tukey’s Biweight must satisfy the following
equation:

c∫

−c

(
x2

2
− x4

2c2 + x6

6c4

)
d�0,1(x)+ c2

6
Pr(|X | > c) = α

c2

6
. (13)

If we put vc(k) = ∫ c
−c xkd�0,1(x), then Eq. (13) can be rewritten as follows

vc(2)

2
− vc(4)

2c2 + vc(6)

6c4 + c2

6
2(1 −�0,1(c)) = α

c2

6
. (14)

At present [see, e.g., Appendix A of Croux et al. (2006) or the code in the R library
robustbase], vc(k) is computed using the following expression

vc(k) = 2k/2

√
π


(
k + 1

2

)
P

(
c2

2
,

k + 1

2

)
,

where  and P are the gamma and the incomplete gamma functions, respectively. In
what follows we give a simpler expression which does not need the gamma function.
We start with a simple lemma.
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Lemma 3.1 If X follows a standard normal distribution, then the kth order truncated
central moment (where k is an even number) is given by

vc(k) =
c∫

−c

xkd�(x) = (k − 1)!!Fχ2
k+1
(c2), (15)

where the double factorial j !! is defined as follows

j !! =

⎧⎪⎨
⎪⎩

j · ( j − 2) · . . . · 5 · 3 · 1, j > 0, odd

j · ( j − 2) · . . . · 6 · 4 · 2, j > 0, even

1, j = −1, 0

Proof Using the well-known relationship between the standard normal and the χ2,
we start from the following equality

vc(k) =
c∫

−c

xkd�(x) =
c2∫

0

xk/2d Fχ2
1
(x).

Using repeatedly the recursive relationship for the χ2 random variable

fχ2
v+2
(x) = x

v
fχ2
v
(x), (16)

where with symbol fχ2
v
(x) we denote the density of a χ2 random variable with v

degrees of freedom, we obtain

vc(k) =
c2∫

0

xk/2−1d Fχ2
3
(x)

= 3

c2∫

0

xk/2−2d Fχ2
5
(x)

= 5 × 3

c2∫

0

xk/2−3d Fχ2
7
(x)

= . . .

= (k − 1)(k − 3) . . . 1

c2∫

0

d Fχ2
k+1
(x)

= (k − 1)!!Fχ2
k+1
(c2).


�
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Remark 3.1 The result given in Appendix B of Riani et al. (2009), linking in an
unexpected way the second moment of the truncated standard normal distribution
with the χ2

3 , is a special case of Lemma 3.1.

Remark 3.2 If c → ∞, then we recover in a simple way the well known relationship
E(Xk) = (k − 1)!!.
Remark 3.3 Given that

vc(2) = Fχ2
3
(c2) = E(X2)Fχ2

3
(c2)

vc(4) = 3Fχ2
5
(c2) = E(X4)Fχ2

5
(c2)

vc(6) = 15Fχ2
7
(c2) = E(X6)Fχ2

7
(c2)

. . . = . . .

vc(k) = (k − 1)!!Fχ2
k+1
(c2) = E(Xk)Fχ2

k+1
(c2),

Lemma 3.1 highlights the connection between consistency factors for robust estimation
and the result anticipated by Tallis (1963): the moments of order k, for k even, when

X ∼ N (μ, σ 2) is truncated outside the interval a <
(x−μ)2
σ 2 < b are those of the

original distribution multiplied by the correction factor

Fχ2
k+1
(b)− Fχ2

k+1
(a)

Fχ2
1
(b)− Fχ2

1
(a)

.

The quantity vc(k) is the numerator of the moment of the truncated distribution, i.e.

the moment of the joint distribution of x and w, where w = 1 if 0 < (x−μ)2
σ 2 < c2 and

w = 0 otherwise.

Using the result of Lemma 3.1 it is immediate to obtain the following theorem.

Theorem 3.1 The constant c linked to Tukey’s Biweight ρ function which produces a
given breakdown point (bdp), must satisfy the following constraint

bdp = 3

c2

{
c�3 − 3 c�5

c2 + 5 c�7

c4 + c2

3
(1 − c�1)

}
, (17)

where [a,b]�k = Pr(χ2
k < b2)− Pr(χ2

k < a2) and [0,b]�k = b�k = Pr(χ2
k < b2).

Proof Using the expressions just found for vc(k) (Lemma 3.1), Eq. (14) can be rewrit-
ten as

6

{
Pr
(
χ2

3 < c2
)

2
− 3

Pr
(
χ2

5 < c2
)

2c2 + 15
Pr
(
χ2

7 < c2
)

6c4 + c2

3
(1 −�(c))

}
= αc2.

(18)
Simplifying, the result follows immediately. 
�
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Fig. 1 Consistency factor c (top panel) and efficiency (bottom panel) as a function of the breakdown point
(bdp) for Tukey’s Biweight

Figure 1 shows the consistency factor c (top panel) and the efficiency (bottom
panel), computed using Eq. (19), of the S-estimator as a function of the breakdown
point, for Tukey’s Biweight. Breakdown values close to 0.5 correspond to an efficiency
smaller than 0.3. These results are in agreement with Hössjer (1992), who proved that
an S-estimate with break down point equal to 0.5 has an asymptotic efficiency under
normally distributed errors that is not larger than 0.33. In our opinion Fig. 1, and the
others given in this paper, although feasible for a long time using the old formulae,
have not received enough attention in the literature so far. For example, as is well
known, results equal to traditional least squares are obtained when c tends to infinity
which correspond to a 0 breakdown point (see lower panel). The slope of the curve at
the bottom panel clearly shows that the transition from 0 to 0.1 in terms of breakdown
point does not cause a significant decrease of nominal efficiency (which always remains
above the 95 % threshold). On the other hand, an increase of breakdown point from, for
example, 0.2–0.3 makes the efficiency decrease from 0.8467 to 0.6613. The maximum
absolute loss of efficiency associated to an increase of 0.1 in breakdown point seems
to be in the interval 0.3–0.4 (from 0.6613 to 0.4619 see Table 1). The new insight
which comes from this figure is that it easily shows for which intervals, the change of
breakdown point causes the most significant decrease in efficiency.

3.2 Consistency factors given a fixed efficiency

In this section, we give a simple expression to find c, if the user wants to fix the
asymptotic efficiency of the robust S-estimator of the regression coefficients.

Theorem 3.2 In order to obtain a fixed efficiency , in the case of Tukey’s Biweight ρ
function, the consistency factor c necessary to obtain a fixed efficiency (e f f ) for the
location estimator must satisfy the following equality
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Table 1 Breakdown point,
consistency factor and
asymptotic efficiency at the
normal model for Tukey’s
Biweight loss function in
regression

Breakdown
point (bdp)

Consistency
factor (c)

Asymptotic efficiency at
the normal model (eff)

0.05 7.5453 0.9924

0.10 5.1824 0.9662

0.20 3.4207 0.8467

0.25 2.9370 0.7590

0.30 2.5608 0.6613

0.40 1.9880 0.4619

0.50 1.5476 0.2868

eff =
{

15 c�5
c4 − 6 c�3

c2 + c�1

}2

945 c�11
c8 − 420 c�9

c6 + 90 c�7
c4 − 12 c�5

c2 + c�3
. (19)

Proof The asymptotic efficiency (eff) of the S-estimator at the Gaussian model is

eff =
{∫ c

−c ψ
′(x)d�(x)

}2

∫ c
−c ψ

2(x)d�(x)
;

see, e.g., Rousseeuw and Leroy (1987, p. 142). In the case of the Tukey’s Biweight ρ
function, we easily obtain

{ψ(x)}2 =
{

1
c8 x10 − 4

c6 x8 + 6
c4 x6 − 4

c2 x4 + x2 if |x | ≤ c

0 if |x | > c,
(20)

ψ ′(x) =
{

5
c4 x4 − 6

c2 x2 + 1 if |x | ≤ c

0 if |x | > c.
(21)

Hence,

c∫

−c

ψ ′(x)d�(x) = 15
Pr
(
χ2

5 < c2
)

c4 − 6
Pr
(
χ2

3 < c2
)

c2 + Pr
(
χ2

1 < c2
)
. (22)

Similarly, we obtain for {ψ(x)}2

c∫

−c

{ψ(x)}2 d�(x) = 9!!Pr
(
χ2

11 < c2
)

c8 − 4×7!!Pr
(
χ2

9 < c2
)

c6 + 6×5!!Pr
(
χ2

7 < c2
)

c4

− 4 × 3!!Pr
(
χ2

5 < c2
)

c2 + Pr
(
χ2

3 < c2
)
. (23)

Taking the square of Eq. (22) and dividing by Eq. (23), the result follows. 
�
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Fig. 2 Consistency factor c (top panel) and breakdown point (bottom panel) as a function of the efficiency
(eff) for Tukey’s Biweight

Table 2 Efficiency, consistency
factor and breakdown point at
the normal model for Tukey’s
Biweight loss function in
regression

Asymptotic efficiency at
the normal model (eff)

Consistency
factor (c)

Breakdown
point (bdp)

0.50 2.0871 0.3804

0.60 2.3666 0.3304

0.70 2.6972 0.2806

0.75 2.8972 0.2548

0.80 3.1369 0.2276

0.85 3.4437 0.1980

0.90 3.8827 0.1638

0.95 4.6851 0.1194

0.99 7.0414 0.0570

Theorem 3.2 gives a simple and efficient way to compute the efficiency values
reported in Rousseeuw and Leroy (1987, p. 142). It also provides a straightforward
way to generalize these results to ρ functions of powers other than Tukey’s Biweight
(such as the optimal loss function which will be considered in Sect. 7).

Figure 2 shows the consistency factor c (top panel) and the breakdown point (bottom
panel) as a function of the efficiency. This plot and Table 2 clearly show that values
of the efficiency greater than 0.9 lead to a considerable decrease in the breakdown
point.

4 Consistency factors for multivariate estimators of location

In this section, we extend our results to multivariate analysis. We first introduce the
notation, starting with M-estimators and then considering their S extension as in Sect. 2.
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We assume to have an i.i.d. sample of observations y1, . . . , yn with each y′
i =

(yi1, . . . , yiv) having a v-variate normal distribution Nv(μ,�). The squared Maha-
lanobis distance between the vectors x and μ with respect to � is defined as

d2(y;μ,�) = (y − μ)′�−1(y − μ). (24)

Multivariate M-estimates are defined as the solution of the following system of
equations (see, for example, Kent and Tyler 1991):

n∑
i=1

W1

(
d2

i

) (
yi − μ̂

) = 0 (25)

1

n

n∑
i=1

W2

(
d2

i

) (
yi − μ̂

) (
yi − μ̂

)′ = �̂, (26)

where W1 and W2 are real-valued functions on [0,∞). The above system of equations
is known as the first-order M-estimator conditions.

Just as with regression estimates, where we aimed at making residuals small, it is
possible to define estimates of location and dispersion that make the distances di , with
i = 1, . . . , n, small. To this end we look for estimates μ̂ and �̂ which minimize some
measure of largeness based on the vector of Mahalanobis distances. The constraint
that |�̂| = 1 is imposed to avoid trivial solutions. More formally, the problem can be
reformulated in terms of minimizing a robust estimate of the scale of the distances
(say σ̂ ) as follows

σ̂ (d(y1), d(y2), . . . , d(yn)) = min with μ̂ ∈ �v, �̂ ∈ Sv, |�̂| = 1, (27)

where Sv denotes the set of symmetric positive definite v× v matrices, and σ̂ denotes
a robust scale estimate. Call this minimization problem ℘n . It is well known that if
σ̂ is the sample median we end up with the Minimum Volume Ellipsoid estimator
(Rousseeuw and Leroy 1987). On the other hand, if σ̂ is an M-estimate of scale that
satisfies

1

n

n∑
i=1

ρ

(
di

σ̂

)
= K , (28)

we obtain the class of multivariate S-estimates (Davies 1987). It is possible to show
(Lopuhaä 1989) that if ρ is differentiable the solution to the minimization problem
℘n also satisfies the first-order M-estimator conditions (25) and (26), and produces
estimators which have the same asymptotic distribution of M-estimators.

As in the univariate case, the equations to compute the consistency factor for the
location estimator μ̂, associated with a prefixed breakdown point or efficiency, are
functions of the truncated normal moments. Thus, the first step consists in finding
easy expressions to compute the multivariate truncated moments.
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4.1 Consistency factors given a fixed breakdown point

In order to prove the main theorem of this section we need to recall the definition of
central moments and we need a lemma.

Definition 1 The central moment of order k of the v dimensional random vector X is
defined as (see for example Kotz et al. 2000, pp. 107–111)

μk1,k2,...,kv (X) = E
[
(X1 − μ1)

k1(X2 − μ2)
k2 . . . (Xv − μv)

kv
]
,

where k1 + k2 + · · · + kv = k and k j ≥ 0. Simplifying the notation, we can rewrite
this expression as

μk1,k2,...,kv (X) = μ1,2,...,v(X) = E

⎡
⎣

v∏
j=1

(X j − μ j )
k j

⎤
⎦

Lemma 4.1 If X = (X1, . . . , Xv)′ follows a v-variate normal distribution with mean
μ and covariance matrix σ 2 Iv , then the kth order central moment μk1,k2,...,kv (X),
where k is an even number, is given by

σ k (v + k − 2)!!
(v − 2)!! = σ k

k/2−1∏
j=0

(v + 2 j), (29)

where s!! ≡ 1 if s ≤ 0.

Notice that when v = 1 the above formula reduces toσ k(k−1)!!, which is consistent
with the expression seen in the previous section. If k = 4 the fourth central moment
reduces to σ 4v(v + 2), while if k = 6 we obtain σ 6v(v + 2)(v + 4). The expression
in Eq. (29) is intrinsically linked to the expression of noncentral moments given by
Holmquist (1988) and Triantafyllopoulos (2003). In what follows we provide a simple
and direct proof.

Proof If X is multivariate normal, due to Isserlis theorem (Isserlis 1918), the kth order
central moment of X is zero if k is odd, while if k is even we obtain

μ1,2,...,v(X) =
∑

(σi jσkl . . . σyz),

where for example σi j is the covariance of Xi and X j and the sum is taken over
all allocations of the set {1, 2, . . . , k} into k/2 unordered pairs. For example, in the
fourth moment case, given that we are dealing with a spherical normal distribution
with uncorrelated components, the terms which are not zeros are the v terms involving

E
(

X4
i

)
= 3σ 4
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and the v(v − 1) terms involving

E
(

X2
i X2

j

)
= σ 4.

The fourth-order moment is given by

v3σ 4 + v(v − 1)σ 4 = v(v + 2)σ 4.

Proceeding in a similar way for the sixth moment, we obtain that there are v terms
involving

E
(

X6
i

)
= 15σ 6,

v(v − 1) terms involving the 3 permutations of the fourth- and second-order terms

E
(

X4
i X2

j

)
= 3σ 6,

and v(v − 1)(v − 2) terms involving

E
(

X2
i X2

j X2
k

)
= σ 6.

Summing up the various terms we obtain

σ 6 {15v + 9v(v − 1)+ v(v − 1)(v − 2)} = σ 6v(v + 2)(v + 4).

Therefore, the result easily follows by induction. 
�
At present (see for example the source code in the R library robustbase) the

truncated central moment of order k (with k even) of the multivariate standard normal
distribution of order v is computed using the expression which follows

μk1,k2,...,kv (X) = 
(
v+k

2

)

(v/2)
2k/2 P

(
c2

2
,
v + k

2

)
, (30)

where P and  are defined in Sect. 3.1.
In the lemma below we give a simpler expression which avoids the use of the two

Gamma functions in (30). However, we preliminary need to define the concept of
elliptical truncation under the multivariate normal distribution.

Definition 2 If X ∼ Nv(μ,�), we define the elliptical truncation in the interval [a b]
the set of points in the v space belonging to E where

E =
{

x |a ≤ (x − μ)′�−1(x − μ) ≤ b
}
, 0 ≤ a < b
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Lemma 4.2 The central moment of order k under elliptical truncation in the interval
[0 c2] satisfies the following identity

μk1,k2,...,kv (X) =
⎧
⎨
⎩

k/2−1∏
j=0

(v + 2 j)

⎫
⎬
⎭ Fχ2

v+k
(c2). (31)

The right-hand side of Eq. (31) extends in a natural way the result previously obtained
for the univariate case [see Eq. (15)]. This result, which is proven in the Appendix,
shows that in the v-variate normal distribution Nv(μ,�) the central moments of order
k under elliptical truncation in the interval [a b] are equal to the original moments
multiplied by Fχ2

v+k
(b)−Fχ2

v+k
(a). In our case a = 0, b = c2 and the original moments

are given in Eq. (29). This result provides a simple alternative proof to the one given by
Tallis (1963), which was based on the moment generating function of the multivariate
normal distribution.

Using the results of the two previous lemmas, the following theorem follows imme-
diately.

Theorem 4.1 The constant c in Tukey’s Biweight ρ function which produces a given
breakdown point (bdp), in presence of v variables, must satisfy the following constraint

bdp = (3v/c2)

{
c�v+2 − (v + 2) c�v+4

c2

+(v + 2)(v + 4) c�v+6

3c4 + c2

3
(1 − c�v)/v

}
, (32)

where c�k is defined in (17).

A result similar to that given in Eq. (32) has been obtained by Campbell (1984)
using the theory of transformations. Our proof is much simpler and direct.

4.2 Consistency factors given a fixed efficiency

We now give the details about how to compute the consistency factor if the user decides
to fix the level of asymptotic efficiency.

Theorem 4.2 In presence of v variables, the consistency factor c associated to a fixed
value of efficiency (e f f ) for Tukey’s Biweight ρ function must satisfy the following
equality

eff =
(
v1,2

c�v+4
c4 − 2v1,1

c�v+2
c2 + c�v

)2

v1,4
c�v+10

c8 − 4v1,3
c�v+8

c6 + 6v1,2
c�v+6

c4 − 4v1,1
c�v+4

c2 + c�v+2
, (33)

where vi,k =∏k
j=i (v + 2 j).
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Proof We start by recalling that when θ̂ = (μ̂, �̂n) is a solution of the minimization
problem ℘n [given in Eq. (27)] and the data come from an elliptical distribution with
parameter θ = (μ �),

√
n(θ̂ − θ) has a limiting normal distribution. The covariance

matrix of the limiting distribution of
√

n(μ̂− μ) is given by (w1/w
2
2)�, where

w1 = 1

v
E
{
ψ2(d)

}

and

w2 = E

{(
1 − 1

v

)
ψ(d)

d
+ 1

v
ψ ′(d)

}

(see for example Lopuhaä 1989). In the case of Tukey’s Biweight function, applying
Lemma 4.2 and using expression (20) we find after some algebra that

w1 =
⎡
⎣
⎧⎨
⎩

4∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+10 < c2

)

c8 − 4

⎧⎨
⎩

3∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+8 < c2

)

c6

+ 6

⎧⎨
⎩

2∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+6 < c2

)

c4 − 4v(v + 2)
Pr
(
χ2
v+4 < c2

)

c2

+vPr
(
χ2
v+2 < c2

)⎤⎦ /v

and

w2 =
{
v(v + 2)(v + 4)

Pr
(
χ2
v+4 < c2

)

c4

−2v(v + 2)
Pr
(
χ2
v+2 < c2

)

c2 + vPr
(
χ2
v < c2

)}
/v.

It is now immediately seen that the efficiency
w2

2
w1

is as claimed. 
�
Figure 3 shows that the efficiency becomes virtually independent of the breakdown

point as the number of variables increases. For instance, the maximal breakdown 0.5
is associated with an efficiency close to 0.85 when v = 5, but the corresponding
efficiency becomes close to 1 when v gets larger. This behavior is well known in the
literature (see for example Rocke 1996; Maronna et al. 2006, p. 190), but the advantage
of our procedure is that such comparisons can be easily made for any value of bdp,
eff and v.

The effect of v on the breakdown point is made explicit in Fig. 4. The plot starts at
v = 5, for which we pick up the value of c giving a 50 % breakdown point, say c0.5.
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Fig. 3 Efficiency as a function of the breakdown point and of the number of variables for Tukey’s Biweight:
v = 5 (top left panel), v = 10 (top right panel), v = 20 (bottom left panel) and v = 50 (bottom right panel)
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Fig. 4 Relationship between breakdown and v for Tukey’s Biweight, when the false rejection probability
is held constant

We then compute

γ = Pr
(
χ2

5 > c0.5

)
,

which is the probability that a five-variate observation with squared Mahalanobis
distance (24) is given null weight under Tukey’s Biweight ρ function at the normal
model. We see how c varies when v increases, by computing the quantile
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c(v)0.5 = χ2
v,1−γ .

This quantile shows the effect of v on threshold c in (11), by keeping γ fixed. Figure 4
displays the values of the breakdown point corresponding to c(v)0.5 for v ≥ 5. The
curve starts at 0.5 by construction, but then decreases rapidly. This means that the
robustness properties of the S-estimator soon deteriorate in higher dimension, if the
false rejection probability γ is kept constant.

5 Scale efficiency in multivariate analysis

Up to now we have dealt with location efficiency. The purpose of this section is to
derive the expression of the constant c associated to a prefixed value of the scale
efficiency.

Theorem 5.1 If X = (X1, . . . , Xv)′ follows a v-variate normal distribution with
mean μ and covariance matrix σ 2 Iv , the consistency factor c for Tukey’s Biweight
function associated to a fixed value of efficiency (e f fsc) of the estimator of the scale
factor σ 2 must satisfy the following equality

effsc =
(
v − 1

v
k1 + I F2

)−1

, (34)

where

k1 = v2,5
c�v+12

c8 − 4v2,4
c�v+10

c6 + 6v2,3
c�v+8

c4 − 4v2,2
c�v+6

c2 + c�v+4(
v2,3

c�v+6
c4 − 2v2,2

c�v+4
c2 +�v+2

)2 , (35)

I F2 = A − B2

(
v0,0

2 c�v+2 − v0,1

2c2 �v+4 + v0,2

6c4 �v+6

)2 ,

and

A = v0,1

4
c�v+4 − v0,2

2c2 c�v+6 + 5v0,3

12c4 c�v+8 − v0,4

6c6 c�v+10 + v0,5

36c8 c�v+12,

B = v0,0

2
c�v+2 − v0,1

2c2 c�v+4 + v0,3

6c4 c�v+6 + c2

6
(1 − c�v).

Proof Under the same assumptions of the proof of Theorem 4.2, the variance of the
limiting distribution of

√
n(σ̂ 2 −σ 2)where σ 2 is a generic element in the diagonal of

the covariance matrix of the underlying data generation process (which due to the affine
equivariance property we assume spherical), and σ̂ 2 is the associated S-estimator, is
given by (see for example Lopuhaä 1989; eq. 5.4)

(2k1 + k2)σ
4,
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where

k1 = v(v + 2)E[ψ2(d)d2]{
E
[
ψ ′(d)d2 + (v + 1)ψ(d)d

]}2

and

k2 = −2

v
k1 + 4E {ρ(d)− K }2

E {ψ(d)d} .

For Tukey’s Biweight we find that

E
{
ψ ′(d)d2 + (v + 1)ψ(d)d

}
=
{
v(v + 2)Pr

(
χ2
v+2 < c2

)

−2v(v + 2)(v + 4)
Pr
(
χ2
v+4 < c2

)

c2 +v(v + 2)(v + 4)(v + 6)
Pr
(
χ2
v+6 < c2

)

c4

}
,

while

E
{
ψ2(d)d2

}
= v(v + 2)Pr

(
χ2
v+4 < c2

)
− 4

⎧⎨
⎩

2∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+6 < c2

)

c2

+6

⎧⎨
⎩

3∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+8 < c2

)

c4 − 4

⎧⎨
⎩

4∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+10 < c2

)

c6

+
⎧⎨
⎩

5∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+12 < c2

)

c8 ,

E
{
ρ2(d)

}
= v(v + 2)Pr

(
χ2
v+4 < c2

)
−
⎧
⎨
⎩

2∏
j=0

(v + 2 j)

⎫
⎬
⎭

Pr
(
χ2
v+6 < c2

)

2c2

+ 5

12

⎧
⎨
⎩

3∏
j=0

(v + 2 j)

⎫
⎬
⎭

Pr
(
χ2
v+8 < c2

)

c4 −
⎧
⎨
⎩

4∏
j=0

(v + 2 j)

⎫
⎬
⎭

Pr
(
χ2
v+10 < c2

)

6c6

+
⎧⎨
⎩

5∏
j=0

(v + 2 j)

⎫⎬
⎭

Pr
(
χ2
v+12 < c2

)

36c8

and

E {ρ(d)} = K = v

2
Pr
(
χ2
v+2 < c2

)
− v(v + 2)

2c2 Pr
(
χ2
v+4 < c2

)

+v(v + 2)(v + 4)

6c4 Pr
(
χ2
v+6 < c2

)
+ c2

6

{
1 − Pr

(
χ2
v < c2

)}
.
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Fig. 5 True and approximate efficiency (based on k1) as a function of v for a value of the consistency
factor c associated to a breakdown point of 0.5 (left panel) and 0.25 (right panel)

Putting all pieces together, after some algebra we obtain the expression claimed in the
theorem. 
�

In the case of v ≥ 2, Tyler (1983) found after a simulation study that k1 suffices as
an index for the asymptotic variance based upon the robust covariance estimator. At
present in the R libraryrobustbase the efficiency of the scale estimator is computed
as 1/k1. Our simple formulae enable us to immediately check under which conditions
we can neglect the term I F2 (which is the expectation of the square influence function
of the robust scale estimator) in Eq. (34). Figure 5 shows that if we fix the breakdown
point to 0.5, the value of the curve associated to the true efficiency is much higher than
the one based on k1. As expected, the difference slowly decreases as v increases. The
accuracy of the approximation increases if we decrease the value of the breakdown
point (see the right panel).

6 Computational details

All the new formulae to compute the consistency factors, given a prefixed value of
breakdown point or efficiency, have been included in the MATLAB toolbox named
FSDA (see Riani et al. 2012). This toolbox can be freely downloaded from the Internet
web address http://www.riani.it/MATLAB.

Given that in all cases the consistency factor has to be calculated through an iterative
process, it is customary to use an iterative loop. In our implementation, we have used
a searching algorithm which produces the required output in a much faster way. We
also have removed, inside the loop, all redundant recalculations of factors which do
not depend on c. It is worthwhile to notice that all terms vi,k =∏k

j=i (v + 2 j) can be
computed once and for all, and are fixed in the iterative procedure. Just to give an idea
of the difference in speed between the old implementation and the new one, we show
in Fig. 6 on the y axis the amount of seconds it takes to compute the consistency factors
for the prefixed values of breakdown point in the sequence 0.01, 0.02, . . . , 0.5 as a
function of the number of variables (v). The dashed line at the bottom is referred to the
new implementation while the solid line is referred to the old procedure downloadable
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Fig. 6 Comparison of computational time (y axis) required to compute the consistency factors c for
breakdown points in the sequence 0.01, 0.02, …, 0.5 for each value of v (x axis)

from Internet.1 A referee showed that much of the difference of the computational time
between the two implementations is due to the fact that the old procedure inefficiently
uses calls to the gamma functions in each step of the loop and that considerable gain
in speed could be obtained if these calls are brought out of it. The new formulae
contained in this paper, however, completely avoid the call to the gamma function.
This figure shows that the new computing time is always around 0.2 s, while the
old one goes from 3 to 10 s as v reaches 20. It is also worthwhile to notice that the
comparison between the computational times has been made just for the calculation of
the consistency factor associated to the breakdown point (that is the easiest formulae).
The computational advantage therefore is likely to be even more significant if we use
the more complicated formulae which refer to the efficiency of location and scale
given in Eqs. (19) and (34).

7 Extensions to the optimal loss function

So far we have dealt with the Tukey’s bisquare ρ and ψ functions. However, it is
important to notice that our method of proof is general and could be applied to any
definition of the loss function based on polynomials. For example in case of the optimal

1 The computing time of the old procedure is based on the MATLAB code which can be down-
loaded from http://www.econ.kuleuven.be/public/ndbae06/Programs/mme/MMrse.txt and uses subfunc-
tions Tbsc, Tbsb and gint. The new code is based on function TBbdp which implements the new
procedure and is contained in the FSDA toolbox. In the FSDA toolbox routine XXXbdp computes the value
of c given as input the required breakdown point and the number of variables; routine XXXeff computes
the value of c given as input the requested efficiency and the number of variables; routine XXXc returns
the breakdown point and the efficiency associated to a particular value of c. Suffix XXX stands for the type
of loss function.
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loss function introduced by Yohai and Zamar (1997) we have that the (standardized)
ρ function is given by:

ρ(x) =

⎧
⎪⎨
⎪⎩

1.3846
( x

c

)2 |x | ≤ 2
3 c

0.5514 − 2.6917
( x

c

)2 + 10.7668
( x

c

)4 − 11.6640
( x

c

)6 + 4.0375
( x

c

)8 2
3 c < |x | ≤ c

1 |x | > c

(36)

with associated ψ function:

ψ(x) = ρ′(x) =

⎧⎪⎨
⎪⎩

2.7692x
c2 |x | ≤ 2

3 c

− 5.3834x
c2 + 43.0672x3

c4 − 69.9840x5

c6 + 32.3x7

c8
2
3 c < |x | ≤ c

0 |x | > c.

(37)

Using the results in Lemmas 4.1 and 4.2 we can easily prove the following two
theorems:

Theorem 7.1 The constant c in the optimal ρ function which produces a given break-
down point (bdp), in presence of v variables, must satisfy the following constraint

bdp = 1.3846
2
3 c�v+2

c2 + 0.5514

[
2
3 c,c

]�v

c2 + −2.6917v

[
2
3 c,c

]�v+2

c2

+10.7668v0,1

[
2
3 c,c

]�v+4

c4 − 11.664v0,2

[
2
3 c,c

]�v+6

c6

+4.0375v0,3

[
2
3 c,c

]�v+8

c8 + 1 − c�v.

Theorem 7.2 In presence of v variables, the consistency factor c associated to a fixed
value of efficiency (e f f ) for optimal ρ function must satisfy the following equality

eff = w1

w2
, (38)

where

w1 =
7.6685 2

3 c�v+2 + 28.9810[ 2
3 c,c

]�v+4

c4 + 2608.2874(v1,2 + v1,1)

[
2
3 c,c

]�v+6

c8

+7679.9013v1,4

[
2
3 c,c

]�v+10

c12 + 1043.29v1,6

[
2
3 c,c

]�v+14

c16
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−463.6959v1,1

[
2
3 c,c

]�v+4

c6 − 6375.7975v1,3

[
2
3 c,c

]�v+6

c10

−4520.9663v1,5

[
2
3 c,c

]�v+6

c14

and

w2 =
2.7692 2

3 c�v − 5.3834[ 2
3 c,c

]�v

c2 + 43.0672v1,1

[
2
3 c,c

]�v+2

c4

− 69.984v1,2

[
2
3 c,c

]�v+4

c6 − 32.3v1,3

[
2
3 c,c

]�v+6

c8 .

Yohai and Zamar (1997) showed that the ρ and ψ functions given above are optimal
in the following highly desirable sense: the final M-estimate has a breakdown point of
one-half, and minimizes the maximum bias under contamination distributions (locally
for small fraction of contamination), subject to achieving a desired efficiency when the
data are Gaussian. Figure 7 compares the efficiency of Tukey’s Biweight loss function
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Fig. 7 Comparison of efficiency of Tukey’s Biweight loss function (solid line) with optimal loss function
(dashed dotted line) for six different values of v
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(solid line) with that of the optimal loss function (dashed dotted line) for six different
values of v. This plot shows that none of the two curves is uniformly above the other. In
presence of large values of breakdown point and moderate values of v (say v ≤ 5) the
efficiency of Tukey’s loss function is above that of the optimal loss function. However,
for moderate values of breakdown point 0.1–0.3 and v > 1, the optimal loss function
is above that of the Tukey’s Biweight. Finally, it is important to notice that the optimal
loss function when v is very large suffers from the same drawbacks of the Tukey’s
bisquare loss function discussed in Sect. 4.2, that is becomes virtually independent of
the breakdown point. This effect seems even more pronounced for the optimal loss
function.

8 A numerical example

The paper focuses on S-estimators, for which there is a trade-off between breakdown
point and efficiency. However, the formulae to tune the efficiency of the S-estimators
can easily be extended to MM-estimators, which are believed not to suffer from this
trade-off. For example, MM-estimators for regression are obtained as

β̂M M = arg min
β∈�p

n∑
i=1

ρ
(ri

s

)
, (39)

where s is precalculated and kept fixed in each iteration (Yohai 1987; Maronna et al.
2006). Generally s is the estimate of the scale which is obtained by S-estimators with
bdp = 0.5, and the initial β to start the iteration is β̂S obtained from Eq. (8). In the
loop above the efficiency parameter eff associated to the ρ function is generally fixed
to 0.90 or 0.95.

An important advantage of our new formulae is that they provide the user with an
easy way to compute the consistency factor for different levels of breakdown point and
efficiency, thus opening the way to much wider comparisons that would be problem-
atic otherwise. The need to repeatedly compute robust estimators for different values
of bdp and eff, to find the best solution, has become a prominent task in robust statis-
tics and has lead to the development of new fast algorithms (Hubert et al. 2012; Riani
et al. 2013) and to tests to balance the trade-off between efficiency and robustness
using MM-estimators (Dehon et al. 2012). In this section we apply our results to a
well-known data set to compare the findings that are obtained when we consider dif-
ferent values of bdp (for S-estimators), and different values of eff (for MM-estimators)
combined with two different loss functions in a regression context.

Before dealing with the data it is interesting to compare the loss (ρ(x)) and weight
(ψ(x)/x) functions associated to a nominal breakdown point of 50 % or a nominal
efficiency of 95 % for Tukey Biweight and optimal. Figure 8 shows that fixing a value
of breakdown point equal to 0.5 leads to a ρ function which has a strong upward
slope as soon as we move away from 0 (see solid line in the left panels). Similarly,
the corresponding weight functions starts a strong decrease when |x | is greater than
1.5. On the other hand, if we fix the efficiency to a high value (and implicitly to a
low break down point) we end up with a ρ function which increases at a much lower
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Fig. 8 Analysis ofρ(x) and weight function (ψ(x)/x) for Tukey Biweight (top panels) and optimal (bottom
panels), for fixed levels of breakdown point and efficiency. The solid line is associated to a value of c linked
to a breakdown point of 0.5, while the dashed line is associated to a value of c linked to a nominal efficiency
of 0.95

rate and similarly to a weight function which assigns a high weight in correspondence
of values of |x | up to 2 in absolute value. Furthermore, it is interesting to observe
that while the weight function of optimal ρ is similar to a hard trimming approach, in
which units get 0 or 1 weight, the Tukey’s Biweight seems to decrease to zero much
more smoothly. Therefore, in the present observations very far from the bulk of the
data, Tukey’s Biweight and optimal are likely to produce equal results, but they may
differ in the presence of masked outliers, which are are not extremely remote as we
are going to see in the data described below.

Atkinson and Riani (2000), pp. 5–9, give an example of a regression dataset with
60 observations on three explanatory variables where there are 6 masked outliers
(observations 9, 21, 30, 31, 38 and 47) and a swamping case (unit 43) that cannot
be detected using standard analyses. The scatter plot of the response y against the
three explanatory variables and the traditional plot of residuals against fitted values,
as well as the qqplot of OLS residuals, (not given here for lack of space) do not reveal
particular observations far from the bulk of the data.

Figure 9 shows the index plot of scaled robust S residuals using four different values
of breakdown point and Tukey’s Biweight loss function (the corresponding plot using
the optimal loss function is very similar so it is not given). As the reader can see, the
two panels on the left which are associated to bdp = 0.5 (top panel) and bdp = 0.3
(bottom panel), convey completely different information about outliers from the one
that can be inferred from the panels on the right, which are associated respectively to
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Fig. 9 Index plots of robust scale residuals obtained using β̂S , Tukey’s Biweight loss function and four
different levels of breakdown point. Top left panel bdp = 0.5, top right panel bdp = 0.1, bottom left panel
bdp = 0.3, bottom right panel bdp = 0.25 The horizontal lines correspond to the 99 % individual and
simultaneous bands using the standard normal

bdp = 0.1 (top right panel) and bdp = 0.25 (bottom right panel). It is surprising to notice
that, changing bdp from 0.25 to 0.3, gives a picture of residuals which is drastically
different. It is also interesting to point out that, while with a value of bdp = 0.5 the
six masked outliers have a residual which is above the 99 % individual asymptotic
confidence band, when bdp = 0.3 the residuals are in between the 99 % individual and
simultaneous thresholds. Finally, when bdp = 0.1 and bdp = 0.25, the swamping case
(unit 43) has a residual which is just above the 99 % individual confidence band.

Figure 10 shows the MM robust scaled residuals obtained using a Tukey’s Biweight
loss function when the efficiency parameter is set to 0.9 (left panel) and 0.95 (right
panel). While the plot on the right (which is similar to the masked index plot of OLS
residuals) highlights the presence of a unit (number 43) which is on the boundary of the
simultaneous confidence band, the plot on the left (based on smaller efficiency) shows
that the six outliers have a residual which is very close to the 99 % simultaneous
threshold. In addition, there are two units (39 and 43) whose negative residual is
very close to the 99 % individual threshold. Figure 11, on the other hand, shows what
happens when we use the optimal loss function. In this case, there is not an appreciable
difference between the two panels and the use of two levels of efficiency leads to the
correct conclusion of identifying the six masked outliers.

This small example has, in our opinion, shown the added value of considering the
output which comes from using different levels of breakdown point or different values
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Fig. 10 Index plots of robust scaled residuals obtained using β̂M M with a preliminary S-estimate of scale
based on a 50 % breakdown point and Tukey Biweight loss function. Left panel 90 % nominal efficiency,
right panel 95 % nominal efficiency. The horizontal lines correspond to the 99 % individual and simultaneous
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Fig. 11 Index plots of robust scaled residuals obtained using β̂M M with a preliminary S-estimate of scale
based on a 50 % breakdown point and optimal loss function. Left panel 90 % nominal efficiency, right panel
95 % nominal efficiency. The horizontal lines correspond to the 99 % individual and simultaneous bands
using the standard normal

of nominal efficiency in S- and MM-estimators. At present, it is customary to use a
value of bdp equal to 0.5 or 0.25 and values of the efficiency 0.85, 0.9 or 0.95. However,
we think that the new computing power enables us to investigate for which values of
efficiency (or robustness) there is a change to a nonrobust fit, hence enabling us to use
the highest possible efficiency still maintaining a robust fit. This is the key idea of the
paper by Riani et al. (2014). The traditional approach to robust statistics is to compare
a robust with a nonrobust fit in a static way. However, the user is interested in under-
standing what is the interplay between the different units and how the model changes
if a different level of bdp or efficiency is used. This is also the keystone idea of the for-
ward search which investigates how the model changes when new units are introduced
into the initial subset. In all cases where observations are sequentially included, the
consistency factors must be continuously recalculated and it is necessary to consider
values of breakdown point beyond those in the sequence 0.5, 0.49, . . . , 0.01 (same
thing for the efficiency). Finally, it is also possible to envisage cases where in certain
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steps of the forward search S- or MM-estimators are used. In addition, also in the con-
text of robust cluster analysis, as in Tclust (García-Escudero et al. 2008) extended to
fuzzy clustering or mixture models to choose the optimal level of trimming or the best
number of groups, a variety of solutions which consider several values of trimming
are considered for a different number of groups. In this case, it could be also important
to have efficient procedures for computing consistency factors which easily enable
us to compare likelihoods based on different levels of trimming. Finally, even in a
situation with just one prefixed level of overall trimming (α) given that the imposed
value of α, due to the different variability of the groups, can spread in a different way
over them, it could be interesting inside each step of the optimization procedure to
have a likelihood function which explicitly incorporates the different trimming levels
associated to the different groups. Therefore, it is important to have algorithms which
enable us to obtain the corresponding consistency factors in an easily understandable
and computationally efficient way, so that the user can easily try a large number of
possibilities losing hardly any time for this calculation.

9 Conclusions

In this paper, we have tackled the problem of obtaining the consistency factors of
robust S-estimators of location and scale both in regression and multivariate analy-
sis for normally distributed observations. We have provided theoretical advances by
proving new formulae for the calculation of these factors. Our new formulae extend to
S-estimators much of the conceptual simplicity of the consistency factors already avail-
able for trimmed estimators. They are also helpful to shed new light on the relationship
between consistency and other important statistical properties of the estimators. The
relationship between the consistency factor c and all the other quantities studied in
this paper, which are automatically determined, is summarized in Table 3, where a
reference to the corresponding formula is given. Finally, we have also provided new
efficient code implementations, which ensure considerable savings in computing time
over the currently available algorithms.

Although in this paper we have only considered the Tukey’s Biweight and optimal
ρ functions for S-estimation, it is important to note that our method of proof is general
and could be applied to any definition of the weight function based on polynomials
(i.e. the Hampel weight function). This fact can become relevant when the number
of variables increases and the robustness properties of Tukey’s Biweight and optimal

Table 3 One to one relationship among the different quantities of S-estimation

Consistency
factor

Breakdown
point

Asymptotic
variance of
location
estimator

Variance of
(shape)
covariance
estimator

Asymptotic
efficiency of
location
estimator

Asymptotic
efficiency of
(shape)
covariance
estimator

c bdp = (32) asvar = 1/(33) asvarsc = 1/(33) eff = (33) effsc = (34)
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loss functions deteriorate. An effective alternative for weight computation in high
dimension is provided by the Biflat function proposed by Rocke (1996). The extension
of our approach to that and other ρ functions will be given elsewhere. Finally, it
is necessary to point out that while in this paper we have mainly concentrated on
S-estimators, the formulae given here can be also used to obtain the consistency factors
associated to tune the efficiency of MM-estimators.
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Appendix

Proof of Lemma 4.2

Proof We start from the definition of the central moment of order k of a v dimensional
random vector X = (X1, X2, . . . , Xv)′

μk1,k2,...,kv (X) = E
[
(X1 − μ1)

k1(X2 − μ2)
k2 . . . (Xv − μv)

kv
]
.

If X ∼ N (0, σ 2 Iv) with the constraint that the region of integration is 0 < x ′x < c2,
we can rewrite the previous expression as:

∫ ∫
. . .

∫

0<x ′x<c2

xk1
1 . . . xkv

v d�(X1) . . . d�(Xv).

This v-dimensional integral can be rewritten in the transformed space as a univariate
integral as follows:

c2∫

0

yk/2 fχ2
v
(y)dy =

c2∫

0

y
v+k

2 −1e−y/2

2v/2(v/2)
dy

=
c2/2∫

0

(2t)
v+k

2 −1e−t dt

2v/2(v/2)
dy

= 2k/2
(
v+k

2

)

(v/2)

c2/2∫

0

t
v+k

2 −1e−t


(
v+k

2

) dt

= 2k/2
(
v+k

2

)

(v/2)
P

(
c2

2
,
v + k

2

)
.
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Now, it is easy to verify that

2k/2(
v+k

2 )

(v/2)
= v(v + 2) . . . (v + k − 2),

because



(
v + k

2

)
=
(
v + k

2
− 1

)
×
(
v + k

2
− 2

)
× · · · ×

(
v + k

2
− k

2

)

(v

2

)

= v + k − 2

2
× v + k − 4

2
× . . .

v

2
× 

(v
2

)

= v(v + 2) · · · (v + k − 2)× 2−k/2 × 
(v

2

)
.

Similarly, it is easy to verify that

P

(
c2

2
,
v + k

2

)
= Fχ2

v+k
(c2),

because

Fχ2
v+k
(c2) =

c2∫

0

t
v+k

2 −1e−t/2

2(v+k)/2((v + k)/2)
dt

= 2

2
v+k

2 ((v + k)/2)

c2∫

0

(2y)
v+k

2 −1e−ydy

=
∫ c2/2

0 y
v+k

2 −1e−y

((v + k)/2)
dy

= P

(
c2

2
,
v + k

2

)
.
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