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We present the FSDA (Forward Search for Data Analysis) toolbox, a new software library that extends
MATLAB and its Statistics Toolbox to support a robust and efficient analysis of complex datasets, affected
by different sources of heterogeneity.
As the name of the library indicates, the project was born around the Forward Search approach, but it has
evolved to include the main traditional robust multivariate and regression techniques, including LMS, LTS,
MCD, MVE, MM and S estimation.
To address problems where data deviate from typical model assumptions, tools are available for robust data
transformation and robust model selection.
When different views of the data are available, e.g. a scatterplot of units and a plot of distances of such units
from a fitted model, FSDA links such views and offers the possibility to interact with them. For example, se-
lections of objects in a plot are highlighted in the other plots. This considerably simplifies the exploration of
the data in view of extracting information and detecting patterns.
We show the potential of the FSDA in chemometrics using data from chemical and pharmaceutical problems,
where the presence of outliers, multiple groups, deviations from normality and other complex structures is
not an exceptional circumstance.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

With this paper we present to the chemometrics community easy
to use software which drastically simplifies the conduct of rigorous
multivariate statistical analyses, which are necessary to address
properly datasets and problems that we introduce in Section 2.

The software is the FSDA (Forward Search for Data Analysis)
toolbox,1 that extends MATLAB2 and its Statistics Toolbox to sup-
port a robust and efficient analysis of complex datasets, affected by
different sources of heterogeneity. When data deviate from typical
model assumptions, e.g. multivariate normality, tools are available
to automatically estimate the most appropriate transformation
type, in a way that is robust to the presence of outliers. For the
same purpose, model selection tools are also available. As the
name of the toolbox indicates, the project was motivated by the For-
ward Search approach to flexible robust estimation. In the Forward

Search the proportion of points used to fit the model, rather than
being fixed in advance, is estimated from a sequence of fits to sub-
sets of increasing size. In this way observations entering in the last
subsets of the sequence are the most remote. Details of this ap-
proach are given in the books of Atkinson and Riani [1] and
Atkinson, Riani, and Cerioli [4] and in the recent discussion paper
of Atkinson, Riani, and Cerioli [5]. However, the project has evolved
to include the main traditional robust multivariate and regression
techniques, including LMS, LTS, MCD, MVE, MM and S estimation.
There are several excellent introductions to robust statistics with
applications of a chemometric nature e.g., just to cite a few,
Rousseeuw [31], Rousseeuw, Debruyne, Engelen, and Hubert [33],
Daszykowski, Kaczmarek, Heyden, and Walczak [13] and Filzmoser,
Serneels, Maronna, and Espen [15]. Therefore, this paper will de-
scribe the use of the main FSDA functions, but will not elaborate
on the statistical properties of the implemented methods.

The choice of a commercial platform such as MATLAB is some-
times a source of criticism, especially from the part of the statistical
community gravitating around R.3 On the other hand, while it is
widely recognized that users should have the possibility to interact
with the data represented in the static or dynamic plots of traditional
exploratory data analysis, to our knowledge MATLAB is currently the

Chemometrics and Intelligent Laboratory Systems 116 (2012) 17–32

⁎ Corresponding author.
E-mail addresses: mriani@unipr.it (M. Riani), domenico.perrotta@ec.europa.eu

(D. Perrotta), francesca.torti@unimib.it (F. Torti).
1 FSDA is copyright of the European Commission and the University of Parma. It is

protected under European Union Public Licence (EUPL), which is a free software license
granting recipients rights to modify and redistribute the code. The logo, visible in Fig. 2,
has been trademarked.

2 MATLAB is ©1984–2011 The MathWorks, Inc. See http://www.mathworks.
com. 3 The R project for statistical computing: http://www.r-project.org/.

0169-7439/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemolab.2012.03.017

Contents lists available at SciVerse ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab



Author's personal copy

only environment with built-in4 interactive data exploration features.
In the FSDA we fully exploit and even extend such features, by con-
necting graphs where the objects represented are logically connected
but have no variable in common (e.g. a scatterplot of units and a plot
of distances of such units from a fitted model).

Other robust statistics software proposed to the chemometrics
community in recent years are LIBRA [42,43] and TOMCAT [14],
both written in MATLAB. For the R environment we mention
CHEMOMETRICS and RRCOV, discussed very recently by Filzmoser
and Todorov [16]. TOMCAT addresses methodologies that are not cov-
ered by FSDA, being more focused on problems where the number of
variables exceeds the number of observations. LIBRA and FSDA have
both a wider scope and, currently, their overlap is essentially limited
to LTS and MCD estimation. Current distinctive features of FSDA are,
for example, S, MM estimation and the forward search, while LIBRA
addresses robust PCA, robust calibration (robust PCR and robust
PLS), classification and depth-based methods.

The focus of the paper is on the distinctive features of FSDA, such as
(i) the attention given to the documentation system fully integrated
with the MATLAB help, (ii) the care given to computational perfor-
mance, (iii) the tools for dynamic interaction with a number of
exploratory plots, (iv) robust model selection tools, (v) automatic de-
termination of transformations in regression and multivariate analysis
and, above all, (vi) a comprehensive set of robust multivariate and
regression methods written in a unified framework.

After introducing some common issues in chemometric applica-
tions (Section 2), we describe the main architectural features of
FSDA, i.e. the platform requirements in Section 3 and some computa-
tional aspects in Section 4. These are complemented by Section 7, that
addresses scalability issues that we plan to address in the near future
in view of applications to large datasets. The core of the paper is
Section 6, describing the use of the main statistical functions in
FSDA. In particular, Section 6.4 introduces the general interactive par-
adigms that we are progressively extending to all FSDA graphical out-
puts, beyond the Forward Search plots. Since it is rare that to
familiarize with a new software instrument and explore all its fea-
tures one uses his/her own data, Section 5 describes how to use the
datasets incorporated in FSDA. As is customary, a section of conclu-
sions closes the paper.

2. Issues in bio-chemical data

Datasets coming from chemical and pharmaceutical problems can
be very complex. Consider for example a chemical analysis of serum
samples taken from a number of individuals following a standardized
bioanalytical format. There are components in a chemical assay which
are rather standard (e.g. reagents), but others necessarily depend on
the specific experimental and environmental conditions of the
assay. In addition, to reduce subjectivity, the analysis of each sample
is often replicated by different operators over different days.

This gives rise to complex datasets possibly affected by outliers
and observations from multiple populations. In addition, it is rather
typical that one or more variables need to be transformed in order
to comply with the common model assumptions of a statistical anal-
ysis, e.g. multivariate normality.

Fig. 1 shows two examples of such datasets coming from an inter-
national pharmaceutical company,5 now included in the FSDA data
repository. In both cases there are 50 units (chemical measurements
on serum samples taken from multiple groups of 50 individuals).
The first dataset has 17 variables and the second has 12, one variable
for each replicate of measurements on the individuals. We will call
the two datasets DS17 and DS12. To make the two plots intelligible
we report only 9 pairs of variables. Moreover, we highlight data
from potentially different populations (due to different experimental
settings of different groups of individuals) with different symbols. We
observe that in DS17 the variables are very correlated, while in DS12
the correlation is not at all obvious. Moreover in DS12 the three
groups, corresponding to three different plates where the serum sam-
ples were analyzed, are quite distinct and this has to be taken into ac-
count. On the other hand, in DS17 it is not clear whether the two
overlapping groups, corresponding to samples from male and female
individuals, have to be treated as a unique population.

The regulatory pharmaceutical authorities recommend to statisti-
cally validate a given chemical assay, to be sure that it will reliably de-
tect a given factor of interest in real clinical trials and tests. Typically,
the statistical validation includes the determination of a cut off point
of the assay, which is the multivariate (or univariate) threshold
above which a unit (or an individual measurement) is considered
positive. Of course the determination of the cut off point must be
based on data coming from samples of individuals not exposed to
the agent or drug responsible for the factor to be detected (negative
control samples).

4 The R community has developed some interfaces to external interactive graphics
systems, such as GGobi (http://www.ggobi.org) and the Java library iPlots
(http://www.iplots.org).
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Fig. 1. A partial view of two complex biochemical datasets, both with 50 units. DS17 (left panel) has 17 variables. The two symbols distinguish between male and female serum
samples. DS12 (right panel) has 12 variables. In this case the serum samples were analyzed using three different plates identified by different symbols. The 9 pairs of variables cho-
sen for the two plots show patterns which are also characteristic of the remaining undisplayed variable pairs.

5 Merck Serono Non-Clinical Development, Biomedical Research Institute RBM
S.p.A., Colleretto Giacosa, Italy.
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Clearly, if a dataset includes multiple groups as in DS12, a single
cut off point is inadequate. Thus, it is necessary to understand wheth-
er we are in the presence of a single population or there are multiple
groups. Sometimes, as in DS12, these groups can be easily explained
by the controlled experimental conditions. Other times multiple
groups and/or outliers that may distort the estimation of the cut off
point appear unexpectedly. Often, the presence of multiple distinct
groups and outliers in supposedly negative control samples, may be
an indication that the chemical assay should be re-designed, and
the statistical analysis postponed to when better data become
available.

The statistical recommendations of regulatory authorities for the
validation phase often try to compromise between optimal and sim-
ple (in the sense of easy to implement and controllable by non-
specialists) statistics. For example Shankar et al. [38], in discussing
the validation of immunoassay used for anti-drug antibodies detec-
tion (DS17 and DS12 refer to such problem), propose to treat data
separately, variable by variable, using a univariate perspective. Coher-
ent with this choice, they propose the use of the traditional boxplots
to detect anomalous values, possibly after logarithmic transformation
in case of non-normality of the data, which is checked using well
known (but sensitive to outliers) tests such as the Shapiro–Wilks.
As a result of this approach, we have for each variable a different
number of measurements declared as outliers. The supposedly nor-
mal clean data are successively combined into a single measurement
using a simple arithmetic mean to determine the cut off point. Other-
wise, if some of the variables are not normally distributed, an appro-
priate empirical percentile is proposed.

Clearly, in doing so one may lose relevant information, such as the
high correlation between the variables of DS17 and the group struc-
ture of DS12, which require multivariate statistical tools. In addition,
it is well known that in the presence of several outliers the phenom-
enon of masking may completely invalidate the statistical estimates
(e.g. the normality test itself) and the final cut off points. Shankar et
al. [38] seem to be well aware of these problems when they write
(p. 1269, Section 2.2, first paragraph) “… These statistical computa-
tions can be appliedwith the help of user-friendly commercial software,
without the need of a formal training in statistics. However, the assis-
tance of a statistician for planning validation experiments and analy-
ses of data can lead to the application of more rigorous and elegant
statistics than suggested herein. …”.

In the following sections we try to demonstrate that the FSDA
toolbox meets the two general requirements mentioned by Shankar
et al. [38]: on the one hand it offers the possibility to apply rigorous
robust multivariate statistical tools and, on the other hand, it makes
this task simple by means of user friendly and well documented
tools.

3. Architecture

FSDA works from the release R2009b of MATLAB6 and uses the
Statistics toolbox. Our software has been tested on Microsoft as well
as Unix (Linux and MacOsX) platforms. Moreover all routines, with
the exception of the interactive graphical tools, seem to work without
major changes in SCILAB and OCTAVE.

We have made use of few third party general utility functions. In
addition, our implementation of the traditional robust estimators (S,
MM, MVE and MCD) follows the lines of the R code developed during
the years by many authors7 with considerable revision and re-design
of many core segments and routines (e.g. the resampling approach).

On MS Windows, a setup program installs the code, updates the
MATLAB search path variable and automatically opens inside the
editor two files (examples_multivariate.m and examples_
regression.m) containing a series of examples of analysis of regres-
sion andmultivariate datasets organized in cells that can be executed one
by one by the user for an overview of the FSDA functions and options. On
Unix platforms the software has to be installed manually from a com-
pressed tar-file. The setup software and the compressed tar-file can be
downloaded from the FSDA web-site, http://fsda.jrc.ec.
europa.eu, also accessible from http://www.riani.it/
MATLAB.

Three graphical user interfaces (GUI) accessible from the standard
‘Start’ button of MATLAB, allow one to explore the main interactive
features of FSDA on plots generated by running the different robust
estimators available on regression and multivariate problems, includ-
ing transformations (Fig. 2). The GUIs are also accessible as m-files in
the \examples subfolder. Other didactic material, also accessible
from the ‘Start’ button as FSDADemos, is available in the form of
movies (with audio) that can be run in a browser connected to the
Internet.

The FSDA has a comprehensive documentation system. Of course,
the head of each m-function describes the function purpose, the
input–output parameters, the bibliographic references, possible func-
tion dependencies, any third party acknowledgment and some self
contained examples of use. In addition, even more extensive docu-
mentation on each FSDA function can be obtained directly from
where the user is working using the standard ‘Function Browser’ of
MATLAB, which is activated by typing shift+F1. For example,
Fig. 3 shows what the user gets on typing “robust regression” from
the help menu and selecting the entry “LXS (FSDA)”. The same exten-
sive documentation is also browsable and searchable in the standard
help pages of MATLAB, accessible from the usual ‘Help’ menu. In the
help pages we have also integrated both an informal and a technical
introduction to robust statistics and the Forward Search (see left
panel of Fig. 4) and a detailed description of a collection of popular re-
gression andmultivariate datasets. The datasets are stored under sub-
folder \datasets.

4. Computational performance aspects

Computational performance is very important if there are big col-
lections of datasets to analyze or extensive benchmarks to run for a
standardized empirical assessment of different statistical methods.
With this in mind, in developing FSDA, we carefully address different
optimization aspects.

• As a standard practice, the execution times of the key functions are
profiled to identify critical code segments. Loops are possibly rep-
laced with matrix or array operations and convenient data types
are chosen for large data structures. For some demanding combina-
torial functions (e.g. the binomial coefficient), FSDA chooses auto-
matically the algorithm to run on the basis of a trade-off between
computation time and storage requirements.

• Almost all algorithms of robust statistics spend a lot of computation
time on re-sampling and computing estimates on the subsamples.
FSDA uses an efficient random sample generation strategy,
implemented by function subsets.m, which dramatically drops
the execution time of the robust algorithms. For example, in a
dataset of size n=200 with 5 explanatory variables (p=5), to com-
pute the estimate of the vector of regression coefficients using Least
Trimmed Squares (β̂LTS) after extracting 20,000 different subsets, it
takes less than 2 s (on a 2.8 GHz Intel CPU).8

6 To work with previous releases adjustments are necessary, for example on the
syntax for ignoring unused function inputs and outputs (e.g. the tilde symbol in
[~, idx]=sort(A) should be replaced with [unusedvar, idx]=sort(A)).

7 See the R library robustbase, http://robustbase.r-forge.r-project.org/ and the
website http://www.econ.kuleuven.be/public/NDBAE06/programs/.

8 The possibility of computing all subsets depends crucially on the available memo-
ry; the subset indices are each stored as a 16-bit integer, occupying 2 bytes of memory.
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Our re-sampling strategy critically depends on combinatorial func-
tions such as the binomial coefficient and the lexicographic genera-
tion of all combinations. Traditionally combinatorial objects are
built using recursive or iterative algorithms. We have re-designed
these algorithms to exploit the way MATLAB stores and manipu-
lates matrices, with a sometimes extraordinary computational
gain. For example, our lexicographic generation of the matrix of
all combinations (combsFS.m), which we populate by visiting
portions of columns rather than sequentially one row after the
other, is about 75 times faster than the native MATLAB implementa-
tion (combs.m contained in nchoosek.m). Moreover, given
that our implementation uses the storage resources more parsimo-
niously, combsFS.m works well for combinations of n and p that
break nchoosek due to memory fault.
A last combinatorial function intensively used by robust procedures
is the random permutation of the elements of a vector.9 Function
shuffling.m in FSDA, uses the shuffling algorithm by Knuth
[21], p. 145–146, which is based on a much older method of Fisher
and Yates [17]. This turned out to be more efficient than the native
MATLAB solution, based on a complete sorting of the vector ele-
ments (function randperm.m).

In the R community it is quite common to accelerate code execu-
tion by compiling critical segments developed in C or C++ and
linking them to an R program. MATLAB offers a similar instrument,
consisting in compiling m-functions into dynamically linked binary
mex-files. However, to distribute and maintain CPU dependent code
is not practical and requires recompilation whenever the sources
are modified. For these reasons, FSDA is exclusively based on
MATLAB code. Nonetheless, users are free to compile specific portions
of code to address specific demanding needs.

5. Datasets

FSDA includes a rich collection of popular datasets (currently
about 50) that can be used to familiarize with the toolbox functions
and replicate examples of the robust literature. The collection in-
cludes the multivariate and regression datasets in the books of
Atkinson and Riani [1] and Atkinson, Riani, and Cerioli [4], several
datasets of the book of Maronna, Martin, and Yohai [23] and a series
of other datasets used in the robust literature.

The datasets are provided in different formats.

• Tab separated data file (.txt file). In this case, to load a data set
into the MATLAB workspace, the user has to type: load
datasetname.txt. This will load the original txt file into a stan-
dard data matrix.

• Data structure, contained inside a .mat file, which is loaded in the
workspace by typing load datasetname.mat. This comple-
ments the data matrix (stored in datasetname.data) with
the variable and observation names (datasetname.colnames
and datasetname.rownames) and data specific notes
(datasetname.notes).

• Cell and Dataset structures, which can be loaded by typing load
datasetnameC and load datasetnameD, respectively.

6. Functions

FSDA contains four main categories of functions: robust linear re-
gression and transformations, robust multivariate analysis and
transformations, robust model selection, and dynamic statistical visu-
alization. Following the classical documentation style of MATLAB, all
FSDA functions can be browsed alphabetically and by category in
the FSDA ‘Function Reference’ help section, of which Fig. 5 shows
the category links (left panel) and the part reached by clicking on
the ‘Robust Model Selection’ link (right panel).

This section describes the implemented methods very briefly,
given that a more formal introduction is available in the FSDA help
pages titled ‘Technical introduction to …’ and, of course, in the spe-
cialized literature. In this section we give more details to the func-
tions and methods which give insights on the biopharmaceutical
problems discussed in Shankar et al. [38]. We use datasets DS17 and
DS12 as examples to illustrate the use and the potential benefits of
FSDA in the chemometrics world.

6.1. Input–output parameters

For many functions the set of input–output parameters is so rich
that it is not convenient nor possible to treat them comprehensively
here. Details on a specific option can be however retrieved from our
FSDA documentation by typing docsearch(‘option_name’)
in the MATLAB CommandWindow. The order with which the option-
al input parameters are set does not matter.

Typically, even a well trained practitioner will make use of few of
the optional parameters available. On the other hand, a researcher
will have the possibility to experiment with many internal variables
controlled by optional parameters, without being forced to touch
the source codes. The use of very flexible and thus elaborated options
is simplified by the adoption of data types of increasing complexity.

Fig. 2. Graphical user interfaces, accessible from the standard ‘Start’ button of MATLAB, which demonstrate how FSDA can be used to analyze regression problems (left) or to find
the best transformation for a given dataset (right).

9 For example, if a subset is thought to be singular, it is increased taking one unit
from a random permutation of the remaining units, until it becomes non singular.
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For example, option databrush controls the interactive brushing10

features of our dynamic statistical visualization tools (see Section 6.4),
but a user may simply want to plot their traditional default version. In
this case, it will not be necessary to instantiate option databrush.
To make a single selection, it will be set to a scalar (e.g.
databrush=1). To make an indefinite number of selections, it will
have to be a structure with a persist field set to ‘on’
(databrush.persist=‘on’). In general, when an option be-
comes a structure, the list of possible fields will be automatically set to
default values and the user will only have to set what is of interest.

The output parameters are dealt with by the same principle: when
a function generates a lot of information, this is organized in an out-
put structure so that the user can extract only fields of major interest.
As an example see the left panel of Fig. 6.

Finally, at the end of each function help page, as is customary in
the MATLAB documentation system, we included a series of code seg-
ments which, once selected, can be immediately executed by typing
F9. In this way the user can see in real time what he finds in the doc-
umentation. See for example right panel of Fig. 6.

6.2. Robust multivariate analysis and transformations

The normal distribution, perhaps following data transformation, has
a central place in the analysis of multivariate data. Mahalanobis dis-
tances provide the standard test for outliers in such data. However, it
is well known that the estimates of the mean and covariance matrix
found by using all the data are extremely sensitive to the presence of
outliers. When there are many outliers the parameter estimates may
be so distorted that the outliers are ‘masked’ and the Mahalanobis dis-
tances fail to reveal any outliers, or indicate as outlying observations
that are not in fact so. Accordingly, several researchers have suggested
the use of robust parameter estimates for the mean and the covariance
matrix in the calculation of the distances. For example, Rousseeuw and
van Zomeren [36] usedminimum volume ellipsoid (MVE) estimators of
both parameters in the calculation of Mahalanobis distances. More re-
cent work such as Pison, Van Aelst, and Willems [25] or Hardin and

Rocke [18] uses theminimumcovariance determinant (MCD) estimator
discussed in Rousseeuw and Van Driessen [34].

In chemometrics, which has continuously to do with repeated ap-
plications of a statistical procedure to multiple samples, the remark of
Cook and Hawkins [11] on the fact that the procedure of Rousseeuw
and van Zomeren [36] may find “outliers everywhere” is of high rele-
vance. The implication is that the size of the outlier test may be very
much larger than the nominal 5% or 1%. In fact, many of these
methods are designed to test whether individual observations are
outlying. As do Becker and Gather [6], we, however, stress the impor-
tance of multiple outlier testing and focus on simultaneous tests of
outlyingness. Therefore, in FSDA we develop methods that are mainly
intended, when the samples are multivariate normal, to find outliers
in α% of the datasets.

Given the above, in FSDA we have included the following bivariate/
multivariate procedures.

6.2.1. unibiv
unibiv implements robust univariate and bivariate analysis.

Robust bivariate ellipses (together with univariate boxplots) are con-
structed for each pair of variables and it is possible to analyze the
units falling outside these robust bivariate contours. Fig. 7 shows the
application of the function to the variables X3 and X13 of dataset
D17. The plot is generated by calling function

out½ � ¼unibiv X :;3ð ÞX :;13ð Þ½ �;’rf’;0:99; ’plots’; 1; ’textlab’; 1ð Þ;

where the optional parameter rf specifies the confidence level of the
robust bivariate ellipse (0.99means that the ellipse leaves outside 1% of
the values under normal conditions), while plots and textlab are
set to 1 respectively to request the generation of the plot and to display
labels associated with the units which are univariate outliers or which
are outside the confidence levels of the contours. In the example,
unibiv has used a robust estimate of correlation based on ranks
and dispersion of the two variables. However, by changing the optional
parameterrobscale it is possible to use all the different robust corre-
lationmeasures described in the paper by Croux andDehon [12]. Besides,
unibiv has preliminarily standardized each variable, say x, using the
median and the scaled MAD: (x−median(x))/(1.4815⋅mad(x)). With
the optional parameter madcoef, it is possible to standardize the
data using alternative measures of location and scale.

If the function is run on the full set made up of 17 variables, the
plot would be hard to interpret, but the output out would provide
a synthesis of the application of univariate and bivariate analyses in

10 Data brushing is a dynamic graphics modality for interacting with graphs to iden-
tify and mark points of interest possibly simultaneously in different graphs. Typically
this is done using the mouse, by clicking on data points or segments of lines or drag-
ging a selection rectangle around data points. These actions have the effect of
highlighting corresponding objects (points, lines, etc.) logically linked in others graphs.
Highlighting takes different forms for different types of graphs.

Fig. 3. FSDA documentation is integrated in the standard Function Browser of MATLAB. Here, a search for “robust regression” has retrieved items from both the Statistics (stats) and
FSDA toolboxes (left plot). Among such items, if the user selects the FSDA function “LXS”, its documentation is automatically displayed in a separate window (right plot).
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a matrix containing the unit indexes, the number of times each unit
has been declared a univariate or bivariate outlier. For example,
using the full dataset unit 25 is always declared a univariate outlier
or a bivariate outlier in 90.44% of the cases, while unit 50 is declared
as a univariate outlier 15 times and 57.35% times as a bivariate outlier.

6.2.2. FSM
It is clear that univariate or pair-wise approaches to complex and

correlated data may lead to partial and perhaps erroneous conclu-
sions. The bivariate view of DS17 in Fig. 7 is just one out of 136 pos-
sible ones. A proper multivariate analysis of the dataset can be
addressed with MVE, MCD, S, MM estimation or with the Forward
Search approach using functions FSM and FSMeda. All these robust
estimators assume a multivariate normal distribution for the central
part of the data.

FSM implements an automatic outlier detection procedure, de-
scribed in Riani, Atkinson, and Cerioli [28], which has a simultaneous
size close to its nominal 1% and a great power. In this method, a series
of theoretical simultaneous confidence bands (envelopes) associated
with the quantiles of the distribution of the minimum Mahalanobis
distance, provide an objective basis for decisions about the number

of outliers in a sample. This detection method can be applied to the
full set of DS17 variables using

out ¼ FSM Xð Þ

Then, out.outliers will contain the list of the units declared
as outliers, 12, 21, 25, 38, 46 and 50. Recalling that in this biopharma-
ceutical problem units are individuals carefully selected to produce
negative control samples, this fraction of outliers seems too high. An
excessive number of outliers suggest that the distribution of the
data is likely to be non-normal. In this case, the user can exploit op-
tion bonflev to force the procedure to stop when the trajectory ex-
ceeds for the first time the very conservative 99.9% Bonferroni bound,

out ¼ FSM X;‘bonflev’;0:999ð Þ;

out.outliers still contains five outliers (units 12, 21, 25, 38, and
50), which is an indication of strong non-normality. In such a situa-
tion one may try improving the analysis by using a transformation
of the data.

Fig. 4. FSDA documentation is integrated in the standard Help Menu of MATLAB. Here, the user is browsing the introductory section on robust statistics.

Fig. 5. The FSDA functions are organized in thematic categories. The two snapshots in the figure show how these are documented.

22 M. Riani et al. / Chemometrics and Intelligent Laboratory Systems 116 (2012) 17–32
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6.2.3. FSMtra and FSMfan
In the extension of the well known Box and Cox [8] family to multi-

variate responses there is a vector λ of v transformation parameters, one
for each of the v response variables. out=FSMtra(X) implements
themonitoring of maximum likelihood estimates of transformation pa-
rameters and the likelihood ratio test statistic for transformation. The
main fields of the output structure are out.MLEtra, with the MLE
of transformation parameters along the search, and out.LIKrat,
with the associated likelihood ratio tests. The specific nature of DS17
suggests to estimating a common transformation value for all variables
that can be done by setting the optional parameter ‘onelambda’ to
1. Fig. 8 shows the likelihood ratio test plots obtained using function
FSMtra as follows

out½ � ¼ FSMtra X;‘onelambda’;1; ‘la0’;λ; ‘plotslrt’;1ð Þ

where λ=[1 0−0.5−0.25]. Option ‘plotslrt’, when set to 1,
provides the graphical output. Option ‘la0’ controls which values
of the transformation parameters have to be tested. For example
la0=1 tests the hypothesis of no transformation, la0=0 tests the
logarithmic transformation, la0=−0.5 tests the reciprocal of square
root and la0=−0.25 tests the reciprocal fourth root. From the plots
it is clear that DS17must be transformed (λ=1 is totally inappropriate)
and that the most promising transformation parameter is λ=−0.25.

FSDA also includes a confirmatory test for the suggested transfor-
mations [26] based on the monitoring of (signed square root) likeli-
hood ratio for testing H0 :λj=λC, where the default value of λC is
[−1,−0.5,0,0.5,1] when all the other variables are transformed as
required. For example to produce a confirmatory plot (fan plot) for
each of the 17 variables using an expansion based on the five most
common values of λ, while transforming all the other variables
using the reciprocal fourth root, we can use the following syntax:

out½ � ¼ FSMfan X;� 0:25 �ones 1;17ð Þð Þ

If we now again apply FSM on the data transformed using the best
parameter value found with FSMtra and FSMfan, i.e. if we run

out½ � ¼ FSM X:̂ �0:25ð Þð Þ

we find that only three units, namely 12, 32 and 38, are declared as
outliers. During the execution of the code, information on the status
of the Forward Search run is displayed in the MATLAB command win-
dow (not given here for lack of space).

6.2.4. FSMeda
FSMeda has exploratory purposes. It enables to storage of a series

of quantities along the Forward Search (Mahalanobis distances (MD),
minimumMD outside subset, maximumMD among the units belong-
ing to subset in each step and other tests). Through the joint analysis
of the plots which monitor the progression of the statistics along the
Forward Search, it is possible to detect the observations that differ
from the bulk of the data. These may be individual observations that
do not belong to the general model, that is outliers. Alternatively,
there may be a subset of data that is systematically different from
the majority. The monitoring of the progression of the statistics
along the search not only enables the identification of such observa-
tions, but also lets us appraise the effect that these observations
exert on parameter estimates and on inferences about models and
their suitability.

FSMeda can, for example, be used to explore the complex struc-
ture of DS12. As an example, we can try running the Forward Search
from an initial subset bs1 chosen within the first group of DS12
which, based on the very partial view of Fig. 1 (right scatterplot, ‘⋆’
symbols), seems to deviate from the other two. This is done with

out½ � ¼ FSMeda Y;bs1; ‘init’;13; ‘plots’;1; ‘scaled’;1ð Þ

where init specifies the point where to initialize the search and
start monitoring the diagnostics. init is set to 13 because DS12
has 12 variables and bs1 must be formed mainly by units in the ‘⋆’

Fig. 6. Example of a function documentation (LXS). The left panel shows some fields of the out structure returned by LXS. The right panel shows code segments that, once selected,
can be executed by typing F9, to reproduce the type of output (graphical in this case) documented in the help page.
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Fig. 7. Robust univariate boxplots and bivariate ellipse for variables X3 and X13 of
dataset D17, generated using function unibiv.m.
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group. Fig. 9 shows the graphical output of the run, a plot of minimum
Mahalanobis distances (scaled, using option ‘scaled’ set to 1)
where the first big jump above the 99% envelope occurs precisely at
step 17, that is in the step prior to the inclusion of the first unit
from the two other groups. The sudden decrease of the distance,
even below the lowest 1% confidence envelope, is due to the big
change in the position of the centroid and gives a strong signal that
the minimum Mahalanobis distance is much smaller than it should
be. The excedance of the lower envelope frequently happens when
the data in the subset contain observations from more than one pop-
ulation. This corroborates the conclusion that DS12 cannot be treated
with the standard models based on just one population and perhaps
suggests reconsidering the experimental setting giving rise to such
dis-homogeneous populations.

The output structure out obtained by function FSMeda contains
many other statistics, which can be plotted separately with minimum

effort. These include the monitoring of Mahalanobis distances for all
units (out.MAL), the units belonging to the subset (out.BB), the
minimumMahalanobis distance of units outside the subset (out.mmd),
the maximum Mahalanobis distance of units inside the subset
(out.msr), the elements of the covariance matrix (out.S2cov),
and others.

6.2.5. Smult and MMmult
Smult and MMmult compute S and MM estimators in multivar-

iate analysis. S estimators are robust estimators which have the
highest possible break-down point (0.5). Unfortunately S-estimates
with a smooth ρ function cannot simultaneously have a high break-
down point and high efficiency [23, p. 131]. In particular, it was
shown that an S-estimate with breakdown point equal to 0.5 has an
asymptotic efficiency under normally distributed errors that is not
larger than 0.33 (see [19]). So these estimators are mainly used as
starting point in the MM procedure of Yohai [44]. In the FSDA imple-
mentation, the fast S algorithm for multivariate location estimation is
for the moment only based on Tukey's biweight function.

MMmult(X) receives an S-estimator as starting value and an M
estimator with fixed scale and re-descending ψ Tukey biweight func-
tion is used from there. The default nominal efficiency which is used
is 95%. The core of the algorithm is a function that can also be used
as standalone, if the user supplies directly an estimate of location
(loc0), shape (shape0) and scale (auxscale):
MMmultcore(X,loc0,shape0,auxscale). It does iterative
reweighted least squares (IRWLS) steps from “initial location”
(loc0) and shape matrix (shape0) keeping the estimate of the
scale (auxscale) fixed. The graphical output of running the two
estimators on DS17 (after transforming the data with negative fourth
root) and using a simultaneous Bonferroni confidence level of 99% is
shown in the left panel of Fig. 10.

conflev ¼1–0:01= size X;1ð Þð Þ;
outMM½ � ¼MMmult X:̂ �0:25ð Þ;′plots′

;1;′conflev′
;conflev

� �
;

outS½ � ¼Smult X:̂ �0:25ð Þ;′plots′
;1;′conflev′

;conflev
� �

;
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In this case, the outliers declared on the basis of Mahalanobis
distances from S or MM estimators would be too many. As usual, de-
tails on the content of outMM and outS are found in the FSDA help
pages.

Huber and Ronchetti [20] pointed out (Section 7.12, p. 195–198) an
inherent instability of S-estimators which, in their opinion, even
“disqualifies an estimate from being called robust”. The problem
has to do with the use of re-sampling methods for solving the
S-estimation minimization problem (locally, unless all possible sub-
samples are extracted) and, therefore, goes beyond S estimation. Due
to re-sampling, runs starting from different extracted samples are like-
ly to produce different estimators, with a lack of reproducibility which
is disturbing. To give more stability to resampling-based estimators,
FSDA has adopted the efficient sampling strategy mentioned in
Section 4, which allows to increasing considerably the number of
extracted subsets without incurring in critical degradation of computa-
tional performances.

6.2.6. MVE and MCD
Functions mve and mcd implement the Minimum Volume Ellip-

soid [30] and Minimum Covariance Determinant [34] estimators.
MCD is given by the subset of h out of n data points with smallest co-
variance determinant. The location and scatter estimates are there-
fore the mean and a multiple of the covariance matrix computed on
h such points. Similarly, MVE is built by looking at the smallest vol-
ume ellipsoid that covers h points. In FSDA the fraction of h points is
chosen implicitly by setting the optional parameter for the break-
down point, bdp, which by default is 0.5. For example,
bdp=0.25 implies that approximately h=0.75n points (the exact
formula is more complex) will be used by the estimators.

These methods assume that the number of observations is at least
5 times the number of variables [36], otherwise bdp should be de-
creased from the standard 0.5 to smaller fractions, e.g. 0.25 [42].
Note that for DS17 this rule of thumb is not fulfilled and, thus, in
this case the results should be taken with caution.

As for the S and MM estimators, graphical output includes the plot
of the robust Mahalanobis distances, shown in the right panel of
Fig. 10, and the scatterplot matrix with the outliers highlighted with
different symbol. As an illustration, we show the matrix of sca-
tterplots of the first five variables of DS17 against each other
(Fig. 11). Note that the histograms along the diagonal account for
the different elements that are present in each bin, grouping them
by type (normal units and outliers).

These graphical outputs have been obtained using a simultaneous
Bonferroni confidence level of 99% and 25% breakdown point with the
following code:

conflev ¼1–0:01= size X;1ð Þð Þ;
bdp ¼0:25;
RAWmcd;REWmcd½ � ¼…

mcd X:̂ �0:25ð Þ;′plots′
;1;′conflev′

;conflev;′bdp′
;bdp

� �
;

RAWmve;REWmve½ � ¼…

mve X:̂ �0:25ð Þ;′plots′
;1;′conflev′

;conflev;′bdp′
;bdp

� �
;

The output of the two estimators consist of two structures RAW
and REW. RAW refers to the standard raw MCD or MVE; on the
other hand, REW refers to the algorithms with re-weighting step.
The structures contain several fields, including the location and co-
variance matrix (loc and cov), the correlation matrix (cor), the
units forming the best subset (bs), the robust Mahalanobis distances
(md), the list of the units declared as outliers (outliers) using
confidence level specified in the optional input conflev (default is
0.975) and the number of subsets thought to be singular singsub.
It is worth mentioning that the estimated output covariance matrix
(cov, re-weighted or not) is based on consistency and small sample
correction factors. The consistency factor is based on the χ2 distribu-
tion and on the ratio h/n (see [39] or [9]). The small sample correction
factor is due to Pison, Van Aelst, andWillems [25] to make the estima-
tor unbiased.

A disadvantage of MCD and MVE, as we have seen in Fig. 10, is that
they tend to declare a larger number of outliers than predicted by the
Bonferroni bound when the sample size is small. This is because they
make substantial use of the asymptoticχ2 approximation to thedistribu-
tion of robust (re-weighted) distances, which may be far from accurate
even for moderately large sample sizes. A much more accurate approxi-
mation, that can work well when n/v≈5 or even smaller, is due to
Cerioli [10] and for MCD is implemented in option betathresh.

From the computational point of view, both MCD and S
implementations exploit respectively the efficient algorithms of
Rousseeuw and Van Driessen [34] and Salibian-Barrera and Yohai
[37]. Further details about input and output parameters are contained
in the help manual of the toolbox.

6.3. Robust regression analysis, transformations and model selection

The group of functions implementing robust regression estimators is
structured almost identically to the multivariate counterpart and
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Fig. 10. DS17, transformed with negative forth root. Index plot of robust Mahalanobis distances found with functions MMmult and Smult (left panels) and mcd and mve (right
panels).
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includes S, MM, LMS, LTS and the Forward Search estimators. These
functions will be briefly introduced in Section 6.3.3 after demonstrating
a set of tools for automatic transformation and model selection.

Such tools exploit the data-driven flexible trimming provided by
the Forward Search to choose regression models in the presence of
outliers. In Section 6.3.1 we use monitoring of the score test statistic
to test whether the response must be transformed. The result is the
so called forward score test discussed in Atkinson and Riani [3]. In
Section 6.3.1 we address the issue of robust model selection, using
the distributional results on the added t-test [2] and Cp in the forward
search [27] and a powerful new version of the Cp plot, which is known
as generalized candlestick plot.

The data chosen to illustrate how these procedures work are the
measurements on ozone concentration used by Breiman and Friedman
[45] when introducing the ACE algorithm. These are a series of daily
measurements, from the beginning of the year, of ozone concentration
(y) and eightmeteorological variables (X1,…,X8) in California. Atkinson
and Riani [1, §3.4] analyze the first 80 observations and find that a time
trend (Time) should be considered as one of the explanatory variables.
Together with the constant term, we therefore have p=10 explanatory
variables.

6.3.1. Analysis of transformations
The plot monitoring the score test statistic for transformation

given in Fig. 12 is produced using the following code:

load ’ozone:txt’; ’ozone’ð Þ;
y ¼ozone :;9ð Þ;
% Add a time trend to design matrix X
X ¼ �40 : 39ð Þ’ozone :;1 : 8ð Þ½ �;
% Produce the fanplot
out½ � ¼FSRfan y;X; ’plots’;1ð Þ;

The plot, that for its characteristic shape is known as a fan plot,
clearly shows that the response must be transformed by taking logs.
The evidence for transformation is diffused throughout the data and
does not depend on the presence of particular observations. More
precisely, the hypothesis of no transformation starts to be rejected
from m around 60.

The fan plot can be made dynamic using function fanplot and
option databrush:

fanplot out;’databrush’;1ð Þ

The user can select one or more trajectories inside the fanplot. As
soon as the user releases the mouse button, the following output au-
tomatically appears:

1. In the command window the list of the steps which have been
brushed (it is also possible to select non-consecutive steps) and
the list of the units associated with the brushed steps together
with their entry order.

2. The scatter of the response (transformed as specified in the associat-
ed score curve which is selected) against each explanatory variable
(yXplot), with highlighted the units associated to the selected steps
in the fanplot. In the yXplot using a simple click on the marker in
the legend, it is possible to hide/show the brushed/unbrushed units.

3. A plot of monitoring scaled residuals with highlighted the trajecto-
ries associated with the selected units in the fan plot. In this plot it
is possible to select additional trajectories by simply clicking on
the mouse on a particular curve. After a click with the mouse, a
pop up yellow window automatically appears (see small rectangle
at the bottom of the right part of Fig. 14) which lists the units as-
sociated with the selected trajectories together with their entry
order.

For example, if the user selects the last two steps in the curve as-
sociated with λ=0.5, which cause a strong rejection of the null

Fig. 11. The first five variables of DS17, transformed with negative forth root, are plotted against each other with outliers found by MCD highlighted. Note the histograms, which
account for the different elements that are present in each bin (normal units and outliers).
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hypothesis that the proper transformation is the square root, the ad-
ditional information which is displayed is shown in Figs. 13 and 14.

6.3.2. Robust model selection
Monitoring the t-tests for individual regression coefficients in the

forward search fails to identify the importance of observations to the
significance of the individual regressors. This failure is due to the order-
ing of the data by the search. It is necessary therefore to use an added-
variable test which has the desired properties since the projection lead-
ing to residuals destroys the effect of the ordering. In order to monitor
the evolution of the added t-test we can use the following simple code:

%create variable labels
labels ¼ ’Time’; ’1’; ’2’; ’3’; ’4’; ’5’; ’6’; ’7’; ’8’f g;
out½ � ¼FSRaddt y;X; ’nameX’;labels; ’plots’;1ð Þ;

Fig. 15 shows that variable Time is clearly significant while, for ex-
ample, variable 1 fluctuates around 0 and is certainly the first which
could be removed in an iterative procedure which deletes the least sig-
nificant variable at each iteration.

If the user decides to consider all possible submodels for the selec-
tion of the best model, generally the statistic which is used is Mallows
Cp. However, this statistic being an aggregate statistic, that is a func-
tion of all the observations, suffers from the well-known lack of ro-
bustness of least squares and provides no evidence of whether or
how individual observations or unidentified structure are affecting
the choice of model, so it is necessary to consider its forward version.
Function FSRms stores the trajectories of Cp for the best models (i.e.
the models which, over the central part of the search, had one of the
three smallest values of Cp). For example the code below

outms½ � ¼ FSRms y;X; ’smallpint’;4 : 6; ’labels’;labelsð Þ

stores in matrix outms.MAL the values of Cp monitored along the
forward search in the range of values of p from 4 to 6 for the best
models. In order to summarize the information contained in out-
ms.MAL, the user can produce the “candlestick” plot (see Fig. 16),
by simply using the following code

cdsplot outms;’laboutl’;1ð Þ

The vertical lines in the plot summarize the values over the central
part of the search. The definition of the candlesticks is:

– Lowest Value; minimum in the central part of the search;
– Central Box; mean and median of the values in the central part of

the search; filled if the mean is greater than the median;
– Stars; the values in the final part of the search, if these lie outside

the box. As default the last 5% of the steps form the final part.
However it is possible to use option finstep to specify the cen-
tral and final part of the search;

– Unfilled Circle; the final value.

Thus, each point in the standard non-robust Cp plot is replaced by
a single vertical line and a series of extra symbols. Option
'laboutl’ specifies whether to add the labels of the ‘influential
units’ that is the units which enter the subset in the final part of
the search (in this example steps 77–79) and bring the value of the
Cp below the minimum or above the maximum value of the central
part of the search. More precisely, by setting 'laboutl’,1 we
display just the unit number close to its symbol. On the other hand,
by setting 'laboutl’,2, the software adds both the unit number
and the associated entry step. In the remaining cases (default), no
label is added to the plot.

For example, this plot clearly shows that the model with explana-
tory variables Time, X4, X5 and X6 has values of Cp which lie well inside
the 2.5% and 97.5% confidence bands. However, in the final step (see
the circle) the value of Cp is above the 97.5% threshold. On the other
hand, for example, the model with explanatory variables Time, X2,
X5 and X8 shows values of Cp which are much greater than the thresh-
old provided by the 97.5% level, but only in the final steps the values
of Cp return inside the confidence interval of acceptance (masking
effect).

Also the candlestickplot is dynamic. Simply adding the option
cpbrush as follows

cdsplot outms; ’cpbrush’;1; ’laboutl’;1ð Þ;

it is possible to highlight with the mouse the models of interest in
order to examine in detail the associated trajectories of Cp along
the forward search. For example, if the user simply selects the
two models discussed above (Time, X4, X5 and X6) and (Time, X2,
X5 and X8), the plot which automatically comes out is given in
Fig. 17.

6.3.3. Robust estimators in regression
The Forward Search in regression is implemented by functions

FSR and FSReda.
FSR is conceived for outlier detection. Inference is made by exam-

ining the trajectory of the minimum deletion residual among obser-
vations that are not in the subset. As in the multivariate case, the
signal detection rule is based on consecutive exceedances above the
extreme envelopes. This procedure has a size which is very close to
the nominal and an average power which is generally greater than
that of comparable methods [40].

FSReda implements the Forward Search approach for explorato-
ry data analysis, by storing along the search many regression statistics
such as residuals, leverage, minimum deletion residual outside sub-
set, maximum studentized residual, units belonging to subset in
each step and other tests. Then, the record of such statistics can be
plotted in traditional or interactive graphical displays.

LXS implements Least Trimmed Squares (LTS) and Least Median
of Squares (LMS, [29]) estimators. In these estimators the percentage
of trimming is fixed a priori and can be controlled using option h. As

Fig. 13. Ozone data: information which automatically appears in the command window if the user has selected the last two steps in the trajectory associated to λ=0.5 in the fan
plot of Fig. 12. Unit 71 joins the subset when m=79, while unit 53 enters the final step. The series of NaN indicates that no other unit joins the subset in the selected steps.
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in the multivariate counterpart MCD (see Section 6.2.6), h is linked to
the breakdown point in option bdp. Using option rew it is possible
to choose between their raw or re-weighted versions. Option
nsamp controls the number of samples to extract to find the estima-
tor. An important parameter is lms, controlling the type of algorithm
used. Default is lms=1, which is to execute LMS. lms=2 runs the
FastLTS will all default options, otherwise if lms is a scalar different
from 1 or 2 standard LTS is used without concentration steps. If
lms is a structure, the fast algorithm of Rousseeuw and Van Driessen
[35] (with concentration steps11) is used with the possibility to con-
trol different aspects of the algorithm, by setting the same fields for
the multivariate counterpart.

Sreg andMMreg implement S andMMestimators in linear regres-
sion. In the S procedure, similar to what happens for LXS, the break-
down point is fixed a priori. Once a robust estimate of the scale is
found, one can obtain a nominal efficiency by using the S estimate as
the starting point for an iterative procedure leading to MM estimators.
When calling these functions, it is possible not only to set up all options
seen for function LXS, but also a series of additional options to solve the
equation for the scale.

6.4. Interactive statistical visualization

This section describes some of the FSDA graphical interaction fea-
tures. The emphasis is on the general interactive paradigms adopted
in FSDA. This line of work was initiated by the need to simplify the ex-
traction of information from the numerous forward plots produced by
the Forward Search, which would require otherwise tedious ad hoc
programming of the traditional static plots [24]. These features have
now being extended to almost all robust statistical graphics functions
in FSDA.

6.4.1. Brushing logically linked objects
In Figs. 12, 14 and 16 there are examples of interactive plots where a

selection made by the user on objects in a given plot is highlighted also
in other plots, containing different objects logically linked with those
selected. Similarly, the points in the index plots of robust Mahalanobis
distances produced by the S, MM, MVE, MCD and Forward Search
methods (Figs. 10 and 19), are logically connected with a traditional
matrix of scatterplots, so that selections in the index plot give rise to

the automatic generation of a scatterplot with the selected units
highlighted as in Fig. 11.

The link is said to be “logical” because the points in the scatterplot of
Fig. 14 have no variable in commonwith the scaled residual trajectories
in the right panel of the same figure or with the fanplot trajectories of
Fig. 12, where the selection was done. Note that the native brushing
tool ofMATLAB does notwork on these objects, as it is limited to objects
physically linked by at least one variable in common. To our knowledge
this type of logical link has not been exploited so far by other statistical
libraries.

Brushing is enabled by the veryflexible optiondatabrush, which
is implemented in twomodalities. A non-persistentmodality, where the
selection can be made by the user only once, and a persistent modality,
where the selection can be repeatedmultiple times. In addition, there is
a persistent non-cumulative brush option, where every time a brushing
action is performed previous selections are removed, and a cumulative
one where each selection is highlighted and appropriately reported in
the legend of the graphs involved.

The non-persistent modality with all default options is obtained
when databrush is 1 (or any other scalar). It also works when per-
sist option is set to the default empty string”. To change the values of
one ormore options, it is sufficient to definedatabrush as a structure
with the field names of the option(s) to change and the corresponding
field value(s) set as desired. Most of the brushing options are specific
to a FSDA internal function,selectdataFS, which is activatedwhen-
ever a brushing operation is requested by theuser. The persistentmodal-
ity is activated by the persist option, which to be cumulative has to
be 'on’(then unit(s) currently brushed are added to those previously

11 In this algorithm the random subsets of size p are used to find subsets of size h≈n/
2 (say H1) by selecting the smallest h squared residuals from a fit based on p observa-

tions. Given the set of n residuals from the first parameter estimate ~β H1ð Þ based on the
subset of h observations, the absolute values of the residuals are ordered and a new

subset H2 formed as those observations giving the h smallest values of ei ~β H1ð Þ
n o���

���.
This process (which is called concentration step) can be repeated a specified number
of times or iterated to convergence.

X9X8X7X6X5X4X3X2

1.5

2

2.5

3

3.5

4

4.5

5

X1

y
0.

5

30 35 40 45 50 55 60 65 70 75 80
−4

−3

−2

−1

0

1

2

3

4

Subset size m

S
ca

le
d 

re
si

du
al

s

71

53

71

53

Brushed units
Unbrushed units

Fig. 14. Ozone data: additional plots which automatically appear if the user has selected the last two steps in the trajectory associated to λ=0.5 in the fan plot of Fig. 12.
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brushed, with a different color) and to be non-cumulative has to be
'off’ (when a new brush is performed, units previously brushed are
removed).

6.4.2. Filtering and annotating objects
FSM has found automatically on DS17 (after appropriate transfor-

mation) three outliers. A graphical exploration of the result can start
from the inspection of the progression of the Mahalanobis distance
through the search. This can be obtained with the graphical function
malfwdplot, after obtaining the desired statistic using FSMeda,
starting the search from a random subset or using one, say bs, deter-
mined with the technique of robust ellipses (function unibiv):

out½ � ¼FSMeda X:̂ �0:25ð Þ;bsð Þ; malfwdplot outð Þ;

Given that, for large datasets, there are many trajectories to dis-
play in malfwdplot (or resfwdplot in regression), we have in-
troduced options bground and fground to control the aspect of
unimportant trajectories (e.g. plotted in a faint color) and those to
be highlighted (e.g. in boldface). In addition, it is possible to activate
the datatooltip, which will display relevant information on a trajecto-
ry selected by the user at a given step of the search with a mouse

click. For example, if the user decides to highlight trajectories 12, 32
and 38, to use a faint color for the unimportant units (say those
with distance smaller that 5) and to add a personalized datatooltip,
the following code is appropriate:

fground ¼struct; bground ¼ struct;
fground:funit ¼ 12 32 38½ �;
bground:bthresh ¼ 5;
bground:bstyle ¼ ’faint’;
datatooltip:DisplayStyle ¼ ’datatip’;
malfwdplotðout ; ’datatooltip’; datatooltip ;

’fground’; fground ; ’bground’; bgroundÞ;

The result in Fig. 18 shows a selection made for unit 38 at step 43.
The annotation of the outliers confirms that the Mahalanobis trajecto-
ries of the three outliers have a value comparable with that of the ma-
jority of the other units only at the very end of the search.

One might also want to highlight the trajectories of the units that
are in the subset at given steps of the search. The interaction modality
that we have developed for this purpose is activated by setting the

Fig. 16. Ozone data: generalized candlestick plot for Cp(m) for the best models in this range with p=4,5,6. The horizontal bands denote 2.5% and 97.5% bands of Cp. The candles
which have a background strip (Time, X4, X5 and X6 and Time, X2, X5 and X8), denote the two models selected by the user.
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Fig. 17. Ozone data: forward plots of Cp(m) for the models the user has selected with
the mouse in the candlestick plot. The almost horizontal lines are associated with
2.5%, 50% and 97.5% critical points of the distribution of Cp during the search.
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field SubsetLinesColor, which also determines the color used
to highlight the trajectories in the subset, for example

datatooltip:SubsetLinesColor
¼ FSColors:cyan:RGB

In this modality if the user does repeated left mouse clicks in the
proximity of steps of interest, the trajectories of the units belonging
to the subset at the selected steps are dynamically highlighted. A
right mouse click terminates this selection modality by marking
with an up-arrow the last selected step. The process is very dynamic
and cannot be reproduced by one or more figure snapshots.

Sometimes one may also want to remove redundant or unwanted
information from a plot. For example, the left panel of Fig. 19 which
shows the index plot of the robust Mahalanobis distances generated
with

conflev ¼ 0:95 0:975 0:99 1–0:01= size X;1ð Þð Þ½ �;
malindexplot out:MAL :;end� 3ð Þ:̂ 2;17 ;’conflev’; conflev

� �
;

while the right panel showswhat theuser gets by clickingwith themouse
on three of the four confidence band legends: the unwanted bands disap-
pear and the corresponding legends are displayed in grayish. This modal-
ity is activated by a function called clickableMultiLegend and
is generally applicable to many other FSDA graphical objects. For
example, in the scatterplot matrix of Fig. 11, the blocks of the grouped
histograms relating to the detected outliers and the corresponding
circles would become both transparent if the user clicks on an outlier
legend that, like in this specific case, has not necessarily to be in the
Figure concerned. In such a case, also the objects associated to the out-
liers in the figure, where the legends are located, would disappear. To
our knowledge, this feature is new for general scatterplot matrices.

7. Developments

Like other well maintained statistical software libraries, FSDA is
constantly enriched with new functions and methods. Future releases
will gradually integrate methods of Principal Components, Discrimi-
nant Analysis, Cluster Analysis and Nonlinear Regression.

The feedback received from many users (a functional mailbox
toolboxfs@unipr.it is associated with the FSDA) advocates
for friendly graphical user interfaces to the most important statistical,
visualization and data acquisition and transformation functions. Others
advance the need to address big datasets and big collections of datasets
or, in other words, the need of very scalable statistical functions.

Scalability issues go beyond the performance aspects discussed in
Section 4 and require reconsideration of even very fundamental (and

thus very used) statistical functions. One of such functions is the
median of a set of values, widely used in applications requiring the re-
peated application of robust estimators. An example is the Median
Absolute Deviation (MAD) criterion, which is used to robustly stan-
dardize the data in many robust procedures, e.g. the MCD. MATLAB
computes the median with the standard but expensive approach of
sorting the numbers, which takes O(n log n) comparisons, while just
the middle element is needed and the ordering of the others is of
no interest. Further discussion about this topic is contained in the
help manual of the toolbox and, for example, in Blum, Floyd, Pratt,
Rivest, and Tarjan [7], Tukey [41], Rousseeuw, Bassett, and Gilbert
[32] and Knuth [22, p. 214–215]. Of course there are other functions
that may have to be addressed to improve scalability, but the median
and order statistics examples well illustrates the related benefits and
complexities.

We are also testing the potential benefits of a different approach
to scalability, which is to write parallel code segments that MATLAB
distributes automatically over different cores, CPUs and even ma-
chines or clusters. Currently this requires a separate Parallel Process-
ing toolbox but, in the absence of it, MATLAB simply runs the parallel
code in the traditional sequential mode.

8. Independent testing

The section includes the feedback of the independent testing
made on FSDA by Prof. Dr. Stefan Van Aelst (University of Ghent),
Prof. Dr. Kharin Alexey and M.Sc. Ihar Badziahin (Belarusian State
University), Dr. Agustin Mayo-Iscar (University of Valladolid).

8.1. Referee 1

The FSDA toolbox offers state-of-the-art techniques for multivariate
outlier detection and robust estimation. Methods for robust linear re-
gression and outlier detection are included aswell. The software library
uses very efficient and stable implementations of the computationally
demanding robust methods. The toolbox does not only contain func-
tions that provide estimates, but offers high-level interactive visualiza-
tion thatmakes it possible to get insight in the structure of the data and
to examine the outliers and their effects.

The installation and use of the library on my Windows7 computer
running MATLAB R2010b was very easy as it comes with detailed in-
structions and an impressive set of examples that can be readily exe-
cuted and illustrate the tools offered by the library. The authors have
also invested a lot of time to write clear and detailed help files that
can guide the user whenever necessary.

The FSDA toolbox allows chemometricians to analyze their multi-
variate and regression data robustly and investigate the role of the
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Fig. 19. Index plot of robust Mahalanobis distances for transformed DS17. The plot can be brushed to produce a matrix of scatterplots with selected units highlighted as in Fig. 11. On
the right panel, Function clickableMultiLegend has activated a graphic modality to hide or show symbols inside all active plots (or similar multi-plot) by clicking on the legend.
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outliers in detail. The only limitation at the moment is that the num-
ber of models that is covered in the library is not large yet. However,
as indicated by the authors, they are working hard to include many
more multivariate models in their toolbox which will strengthen it
further and make future versions even more attractive to analyze
chemometrics data.

Independently tested by:

Prof. Dr. Stefan Van Aelst
Ghent University
Dept. of Applied Mathematics and Computer Science
Krijgslaan 281 S9, B-9000 Gent (Belgium)
Stefan.VanAelst@UGent.be
http://users.ugent.be/svaelst/

8.2. Referee 2

We have tested the FSDA toolbox for MATLAB that aims to imple-
ment the methods of robust data analysis, especially for complex data
sets. The toolbox is easy for downloading, and the setup process does
not give any problem. The help is friendly written. The FSDA was test-
ed with MATLAB of R2010b 64-bit (win64).

The contents of the toolbox are impressively rich and are enough for
the very large set of modern theoretical and practical problems in the
light of the current state of Robust Statistics. We have carefully
examined the work of the FSDA toolbox according to the given set of
examples, aswell as on our own data sets, andwe can definitely recom-
mend this toolbox to theoretical statisticians for numerical studies as
well as to applied statisticians. The implementation is surprisingly fast
compared to what could be expected from the “not easy”MATLAB plat-
form. So the authors deserve many nice responses for the effectiveness
of the realization of the Robust Statistics procedures that are known to
be quite time-consuming. The syntax and the interface are clear. All
the numerical results and inferences obtained during testing of the tool-
box coincidewith the expected, so the realization of themethods is cor-
rect.Minor comments to the exampleswere sent to the authors, and the
toolbox has been improved.

Thus, on our opinion, the FSDA toolbox is a nice set of easy-to-use
computer programs that realizes the broad spectrum of methods, and
basing on our very positive impression from its testing, we would like
to recommend this toolbox for all statisticians who might need robust
statistical computing and interactive data exploration.

Independently tested by:

Dr. Alexey Kharin
Belarusian State University
Department of Probability Theory and Mathematical Statistics
Minsk, Belarus
KharinAY@bsu.by
and M.Sc. Ihar Badziahin
Department of Mathematical Modeling and Data Analysis
Belarusian State University

8.3. Referee 3

This newMatlab toolbox implements the Forward Search for multi-
variate analysis and regression. By looking at the design of the functions,
it is possible to notice not only the advanced programming skills, but
also the deep knowledge of implemented statistical procedures of the
authors of this library. However, this is not a surprise, because this
team is the samewho createdmany of the statistical procedures related
to it. The use of this toolbox is very easy for non-expertMatlab users be-
cause, by following the working paper it is possible to explore in a nice
and useful way, all the incorporated functionalities in the package. The
help system contains many examples corresponding to the data sets

incorporated in the library, which include: the statistical problem, the
Matlab code, the Matlab output and the interpretation of the results.
The library incorporates Forward Search procedures corresponding
toMultivariate analysis and regression, joined to classical and recent ro-
bust procedures. Given that these robust procedures derive from com-
plex estimators and their obtainment is highly computer intensive, it
is clear the attention dedicated by the authors for the “Computational
Performance Aspects”.

As a non-typical characteristic, the library gives assistance to the
user, when identifying outliers, to search for the best transformation
for the variables in multivariate analysis or in regression. The
atypicity of an observation or a group of them is strongly linked to
the chosen scale for the data. In this way, the high prevalence of out-
liers in a data set, as shown in some examples, can be related to the
fact that the variables are not treated in the right scale. Because of
this, it is very important that these functionalities appear in a joint
way in the program.

Another nice surprise in the new toolbox is the possibility of brus-
hing “logically linked objects”. Thanks to this feature, the typical plots
of the forward search can be used together and it gets easier to under-
stand the behavior of individuals or groups of individuals inside the
analyzed data sets. The movies attached to the toolbox show the possi-
bilities of brushing in several data examples. This audiovisual material
can be considered as a micro-course in the forward search. This pack-
age, because of all the aforementioned characteristics, but specially be-
cause of the brushing facilities, could be very useful in teaching robust
multivariate and regression procedures to undergraduate students of
sciences faculties.

Independently tested by:

Dr. Agustin Mayo-Iscar
Universidad de Valladolid
Department of Statistics and Operational Research
Paseo del Prado de la Magdalena, s/n, 47011
Valladolid, Spain
agustin@med.uva.es

9. Conclusions

FSDA is designed to couple robust statistical methods with inter-
active and flexible data exploration instruments, conceived to appre-
ciate the effect of outliers or multiple populations on the estimates
produced by the statistical method in use. We have seen this applied
to the index plot of robust distances produced by the well known ro-
bust methods of regression and multivariate analysis (LMS, LTS, MCD,
MVE, S and MM). We have also seen this in a variety of Forward
Search plots, for which the extraction of information critically de-
pends on the possibility of interacting with such plots.

Demonstrations have been conducted using real datasets related to
a bio-pharmaceutical problem. We have analyzed such datasets in
co-operation with the end users. The FSDAwas used in the preliminary
exploration of their chemical analysis samples, for checking robustly the
normality of the data, finding appropriate transformations for non-
normal and contaminated data and, finally, for detecting multivariate
outliers. We hope we have demonstrated that these statistical tasks
can be all simplified by the adoption of the FSDA toolbox.
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