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Outliers and robustness for
ordinal data

Marco Riani, Francesca Torti and Sergio Zani

This chapter tackles the topics of robustness and multivariate outlier detection for ordinal data.
We initially review outlier detection methods in regression for continuous data and give an
example which shows that graphical tools of data analysis or traditional diagnostic measures
based on all the observations are not sufficient to detect multivariate atypical observations.
Then we focus on ordinal data and illustrate how to detect atypical measurements in customer
satisfaction surveys. Next, we review the generalized linear model of ordinal regression and
apply it to the ABC survey. The chapter concludes with an analysis of a set of diagnostics to
check the goodness of the suggested model and the presence of anomalous observations.

9.1 An overview of outlier detection methods

There are several definitions of outliers in the statistical literature (see Barnett and Lewis,
1994; Atkinson et al., 2004; Hadi et al., 2009). A commonly used definition is that outliers
are a minority of observations in a data set that is represented by a common pattern which can
be captured by some statistical model. The assumption here is that there is a core of at least
50% of observations that is homogeneous and a set of remaining observations (hopefully few)
which has patterns that are inconsistent with this common pattern. Awareness of outliers in
some form or another has existed for at least 2000 years. Thucydides, in his third book about
the Peloponnesian War (III 20, 3–4), describes how in 428 bc the Plataeans used concepts of
robust statistics in order to estimate the height of the ladder which was needed to overcome
the fortifications built by the Peloponnesians and the Boeotians who were besieging their city.

The same winter the Plataeans, who were still being besieged by the Pelopon-
nesians and Boeotians, distressed by the failure of their provisions, and seeing no
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hope of relief from Athens, nor any other means of safety, formed a scheme with
the Athenians besieged with them for escaping, if possible, by forcing their way
over the enemy’s walls; the attempt having been suggested by Theaenetus, son of
Tolmides, a soothsayer, and Eupompides, son of Daimachus, one of their generals.
At first all were to join: afterwards, half hung back, thinking the risk great; about
two hundred and twenty, however, voluntarily persevered in the attempt, which
was carried out in the following way. Ladders were made to match the height of
the enemy’s wall, which they measured by the layers of bricks, the side turned
towards them not being thoroughly whitewashed. These were counted by many
persons at once; and though some might miss the right calculation, most would hit
upon it, particularly as they counted over and over again, and were no great way
from the wall, but could see it easily enough for their purpose. The length required
for the ladders was thus obtained, being calculated from the breadth of the brick.

Rejection of outliers prior to performing classical statistical analysis has thus been regarded
as an essential preprocessing step for almost as long as the methods have existed. For example,
a century and a half ago Edgeworth stated that: ‘The method of Least Squares is seen to be our
best course when we have thrown overboard a certain portion of our data – a sort of sacrifice
which often has to be made by those who sail upon the stormy seas of Probability’.

For univariate data, Grubbs (1969) defined an outlier as an observation that ‘appears to
deviate markedly from other members of the sample in which it occurs’. For multivariate data,
however, the examination of each dimension by itself or in pairs does not work, because it is
possible for some data points, as we will see in the next section, to be outliers in multivariate
space, but not in any of the original univariate dimensions. When the variables under study
are not measured on a quantitative scale, as often happens in customer satisfaction surveys,
the need to jointly consider several variables becomes of paramount importance in detecting
atypical observations. For example, in the 11 September attacks on World Trade Center in New
York, five out of the eighty passengers on one of the flights displayed unusual characteristics
with respect to a set of qualitative variables. These five passengers were not US citizens, but
had lived in the USA for some period of time, were citizens of a particular foreign country,
had all purchased one-way tickets, had purchased these tickets at the gate with cash rather
than credit cards, and did not have any checked luggage. One or two of these characteristics
might not be very unusual, but, taken together, they could be seen as markedly different from
the majority of airline passengers.

Identification of outlying data points is often by itself the primary goal, without any
intention to fit a statistical model. The outliers themselves sometimes can be points of primary
interest, drawing attention to unknown aspects of the data, or especially, if unexpected, leading
to new discoveries. For example, one of the purposes of the Institute for the Protection and
Security of the Citizen, one of the institutes of the European Commission’s Joint Research
Centre, is to find patterns of outliers in data sets including millions of trade flows grouped in
a large number of small to moderate size samples. The statistically relevant cases, which can
be due to potential cases of tax evasion or activities linked to money laundering, are presented
for evaluation and feedback to subject-matter experts of the anti-fraud office of the European
Commission and its partner services in the member states. In the context of international trade,
the unexpected presence of a set of atypical transactions from or towards a particular country
can be an indication of trade carousels (repetitive trade of the same good among the same
persons), potential illegal activities or stockpiling.
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The examples above clearly demonstrate the need for outlier identification both on small
and very large data sets, whether the available variables are quantitative or qualitative. See Su
and Tsai (2011) for a recent overview of the different approaches to outlier detection.

9.2 An example of masking

The purpose of this section is to show that when multivariate (multiple) outliers are present
in the data, traditional tools of visual inspection or traditional data analysis based on least
squares (LS) in regression may lead us to incorrect conclusions. Atkinson and Riani (2000,
pp. 5–9) give an example of a regression data set with 60 observations on three explanatory
variables (X1, X2 and X3) where there are six masked outliers that cannot be detected using
standard analyses. The scatter plot of the response y against the three explanatory variables
(see Figure 9.1) simply shows that y is increasing with each of X1, X2 and X3, but does not
reveal particular observations far from the bulk of the data. The traditional plot of residuals
against fitted values (see left panel of Figure 9.2) shows no obvious pattern and the largest
residual is for a unit (no. 43) which lies well within the envelopes of the quantile–quantile plot
of studentized residuals (see the right-hand panel of Figure 9.2).

In the regression context, the best-known robust methods are based on the use of least
trimmed squares (LTS), least median of squares (LMS) or on forward search (FS) – see
Morgenthaler (2007) and Rousseeuw and Hubert (2011) for recent reviews of robust methods
in regression. The LTS regression method searches for an estimate of the vector of regression
coefficients which minimizes the sum of the h smallest squared residuals, where h must be at
least half the number of observations. On the other hand, the LMS estimator minimizes the
median of the squares of the residuals. LTS and LMS are very robust methods in the sense that
the estimated regression fit is not unduly influenced by outliers in the data, even if there are
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Figure 9.1 Plot of y against each of the explanatory variables.
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Figure 9.2 Traditional uninformative diagnostic plots. Left: least squares residuals against
fitted values. Right: quantile–quantile plot of studentized residuals.

several atypical observations. Due to this robustness, we can detect outliers by their large LTS
(LMS) residuals. Given that explicit solutions for LMS and LTS do not exist, approximate
solutions are sought using elemental subsets, that is, subsets of p observations, where p is the
number of explanatory variables including the intercept (Rousseeuw, 1984; Rousseeuw and
Van Driessen, 2006).

Because of the way in which models are fitted, whether with LS, LTS or LMS, we lose
information about the effect of individual observations on inferences about the form and
parameters of the model. In order to understand the effect that each unit, outlier or not, exerts
on the fitted model, it is necessary to start with a subset of data and monitor the required
diagnostics. In the example above, if we start with a least squares fit to four observations,
robustly chosen, we can calculate the residuals for all 60 observations and next fit to the five
observations with smallest squared residuals. In general, given a fit to a subset of size m, we
can order the residuals and take, as the next subset, the m + 1 cases with smallest squared
residuals. This gives a forward search through the data (Atkinson and Riani 2000; Riani et al.,
2009), ordered by closeness to the model. We expect that the last observations to enter the
search will be those that are furthest from the model and so may cause changes once they are
included in the subset used for fitting. Figure 9.3 shows the monitoring of the scaled squared
residuals for the 60 units of the data set. In this case we have initialized the search with LTS,
investigating all possible ( 60

4 ) subsets and taking the one with the smallest sum of the 50%
smallest residuals, although this is not necessary. This fascinating plot reveals not only the
presence of six masked outliers but also that:

(1) the six outliers form a cluster, because their trajectories are very similar – in other
words, they respond in a similar way to the introduction of units into the subset;

(2) the residuals of the six outliers at the end of the search are completely mixed with those
of the other units, therefore traditional methods based on single deletion diagnostics
cannot detect them;
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Figure 9.3 Monitoring of squared scaled residuals. The outliers have been drawn with dotted
lines, while the trajectory of the case which in the final step shows the largest residual has
been drawn with a solid line. All the other unimportant trajectories have been shown in faint
grey.

(3) the entry of the six outliers causes a big increase in the trajectory of the residual for
unit 43. Indeed this is the unit which in the final step has the largest residual and may
be wrongly considered as an outlier from the traditional plot of residuals against fitted
values (see Figure 9.2).

9.3 Detection of outliers in ordinal variables

The problem of defining and detecting outliers for ordinal variables has received scant attention
in the literature. For example, the recent book of Agresti (2010) on the analysis of ordinal
data does not mention this topic. Only a few papers deal with ordinal outliers in multivariate
statistical methods (Zijlstra et al., 2007; Pardo, 2010; Dong, 2010; Liu et al., 2010). One of the
reasons may be due to the difficulty of defining outliers in ordinal variables. Clearly, if we define
as univariate outliers the observations that are different from the majority of the observations
in a data set, for an ordinal variable corresponding to a ranking, no unit can be considered as an
outlier, because the observations take on values (ranks) from 1 to n. In an ordered categorical
variable with k levels, a unit may have each of k, a priori, defined categories and therefore
no outlier could be detected. However, in a few special cases the frequency distribution of
a variable may show univariate outliers. Consider, for example, the fictitious distribution of
the responses of 200 customers on overall satisfaction given in Table 9.1. The two ‘very
unsatisfied’ customers may be considered as univariate outliers, because this category of the
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Table 9.1 Overall satisfaction of 200 customers.

Levels Frequencies

Very unsatisfied 2
Unsatisfied 0
Fair 30
Satisfied 120
Very satisfied 48

200

variable has a very low frequency and is separated from the other categories (the ‘unsatisfied’
label has zero frequency). If we assume that there is an underlying quantitative variable which
has produced the observed ordinal categories (continuum hypothesis), the first category may be
considered as coming from a different distribution. However, distributions like the one in Table
9.1 are very unusual in real situations. For example, in the ABC survey, no variable presents
such a distribution. Therefore, for ordinal variables we suggest the following definition:

Definition Bivariate and multivariate outliers for ordinal variables are those units repre-
senting an unusual combination of the categories or of the ranks of the variables.

The previous definition of multivariate outliers can be applied both to rankings and to
ordered categorical variables or to a set of nominal and ordinal variables. Notice that, similarly
to what we saw in the previous section, for categorical variables, a multivariate outlier may
not necessarily be a univariate outlier with respect to single ordinal categorical variables.

9.4 Detection of bivariate ordinal outliers

The joint distribution of two ordinal categorical variables, with k1 and k2 categories, can be
presented in a k1× k2 contingency table. Consider, for example, the data in Table 9.2, showing
the bivariate distribution of the 255 (of 266) not-missing respondents of the ABC survey
with respect to the variables ‘Overall satisfaction level with ABC’ (question 1) and ‘Overall

Table 9.2 Contingency table of the 255 non-missing respondents of questions ‘Overall satis-
faction level with ABC’ (q1) and ‘Overall satisfaction level with the equipment’ (q11) in the
ABC survey.

Very Very
q1\q11 unsatisfied Unsatisfied Fair Satisfied satisfied Total

Very unsatisfied 4 3 3 1 0 11
Unsatisfied 1 8 6 8 ⇒2 25
Fair 0 5 40 21 1 67
Satisfied ⇒1 2 20 86 7 116
Very satisfied 0 0 3 26 7 36
Total 6 18 72 142 17 255
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satisfaction level with the equipment’ (question 11). The marginal distributions of the two
variables show no outlier, but the pairs marked with the arrow symbol, (satisfied, very unsat-
isfied) with frequency 1 and (unsatisfied, very satisfied) with frequency 2, may be considered
as unusual (non-coherent) combinations of the categories, that is, bivariate ordinal outliers.

Kendall’s tau-b rank correlation index computed on all 255 units is equal to 0.480, with
standard error 0.049. If we delete the three potential outliers, the tau-b index becomes 0.518
with a standard error of 0.044. The rank correlation without the outliers is higher and may
be more appropriate to describe the association between the two variables for the majority
of units.

9.5 Detection of multivariate outliers in ordinal regression

In this section, we apply a generalized linear model for ordinal variables using ‘Overall
satisfaction level with ABC’ (q1) as response variable (see Bradlow and Zaslavsky, 1999, for
an approach based on a different model for ordinal data). In Section 9.5.1, we briefly review
the building blocks of ordinal regression for better understanding of our results. In Section
9.5.2 we define our model, we analyse the discrepancies between the observed and predicted
values for detecting the eventual presence of atypical observations, and finally, we propose a
detailed analysis of some anomalous units, or subgroups of units, for better understanding of
the key features of the data set.

9.5.1 Theory

In most cases it is implausible to assume normality and homogeneity of variance for an ordered
categorical outcome when (as in the case of our application) the ordinal outcome contains
only a small number of discrete categories (Chu and Ghahramani, 2005). Thus, the ordinal
regression model becomes the preferred modelling tool, because it does not assume normality
and constant variance. The model is based on the assumption that there is a latent continuous
outcome variable and that the observed ordinal outcome (which in our case is the global
satisfaction index) arises from discretizing the underlying continuum into k ordered groups.

To be more precise, the ordinal regression model (McCullagh, 1980), which is nothing
more than a generalized linear model (McCullagh and Nelder, 1989), may be written in the
following form:

link(γi j ) = α j − [b1xi1 + b2xi2 + . . . + bpxip], j = 1, . . . , k − 1 and i = 1, . . . , n.

(9.1)

The parameter αj represents the threshold value of the jth category of the underlying continuous
variable. The αj terms often are not of much interest in themselves, because their values do
not depend on the values of the independent variables for a particular case. They are like the
intercept in a linear regression, except that each level j of the response has its own value. In our
application the number of categories k – 1 is equal to 4 (1 = very unsatisfied, 2 = unsatisfied,
3 = fair, 4 = satisfied). As usual, one of the classes of the response (in this case the category
‘very satisfied’) must be omitted from the model, because it is redundant.

The parameter γ ij is the cumulative distribution function for the jth category of the ith
case. For example, in our case γ i2 is the cumulative probability that the ith subject is ‘very
unsatisfied’ or ‘unsatisfied’.
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In (9.1), link(γ ij) is the so-called ‘link function’ which is typical of generalized linear
models. In the case of ordinal regression, it is a transformation of the cumulative probabilities
of the ordered dependent variable that allows for estimation of the model. The most commonly
used links are logit, probit, negative log-log, complementary log-log and Cauchit. While the
negative log-log link function is recommended when the probability of the lowest category is
high, the complementary log-log is particularly suitable when the probability of the highest
category is high. Finally, the logit, probit and Cauchit links assume that the underlying depen-
dent variable respectively has a logistic, normal or Cauchy distribution. In general the Cauchit
link is mainly used when extreme values are likely to be present in the data.

The number of regression coefficients is p: b1, . . . , bp are a set of regression coefficients
and xi1, xi2, . . . , xip are a set of p explanatory variables for the ith subject.

With regard to the −[b1xi1 + b2xi2 + · · · + bpxip] term in the model, it is interesting
to note two aspects. First, the negative sign before the square brackets ensures that larger
coefficients indicate an association with larger scores. In our case, for example, a positive
coefficient of an explanatory variable means that people who are in that class have a greater
probability of showing a global level of satisfaction.

Second, the expression inside the square brackets does not depend on j. In other words,
if the link is logit, for example, this implies that the effect of the independent variables is
the same for all the logits. Thus the results are a set of parallel lines or hyperplanes, one for
each category of the outcome variable. It is possible to test this assumption using the so-called
‘test of parallel lines’ against the alternative that the relationships between the independent
variables and logits are not the same for all logits. If the output of the testing procedure leads
us to reject the hypothesis of parallel lines, it is necessary to introduce into the model a scale
component and to modify the link function as follows:

link(γi j ) = α j − [b1xi1 + b2xi2 + . . . + bpxip]

exp (τ1zi1 + . . . + τk zik)
. (9.2)

The numerator of equation (9.2) is known in the literature as the location component of the
model, while the denominator specifies the scale. The τ1, τ2, . . . , τk are coefficients for the
scale component and the zi1, zi2, . . . , zik are predictor variables for the ith subject for the scale
component (chosen from the same set of variables as the xs). The scale component accounts
for differences in variability for different values of the predictor variables. For example, if
certain groups have more variability than others in their ratings, using a scale component to
account for this may improve the model.

In ordinal regression, in order to evaluate the goodness of fit of the model, the indices
which are typically used are Cox and Snell’s R2 (R2

CS) and Nagelkerke’s pseudo-R2(R2
N)

(Nagelkerke, 1991). The second index is a modification of the first which adjusts the scale of
the statistic to cover the full range from 0 to 1. These two indexes are expressed as follows:

R2
CS = 1 −

(
l(0)

l(β̂)

)2/n

, R2
N = R2

CS

max(R2
CS)

, (9.3)

where l(β̂) is the log-likelihood of the current model, l(0) is the log-likelihood of the ini-
tial model which does not contain explanatory variables (null model), and max(R2

CS) =
1 − {l(0)}2/n .
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9.5.2 Results from the application

We initially considered all the 133 variables present in the ABC 2010 ACSS data set as
explanatory variables. We then repeated the analysis considering only the 21 overall satisfaction
level variables (questions 11, 17, 25, 31, 38, 42, 43, 49, 57, 65, 67, 70 and 73–81). Here we
present only the results of this last model, since, for the purposes of our exposition, the
difference between the two sets of results is not appreciable.

The data set has a large number of missing values. Thus we decided to keep in the analysis
only the six variables with less than 10% missing data (questions 11, 17, 25, 38, 57, 65,
i.e. overall satisfaction level with the equipment, sales support, technical support, ABC’s
supplies and orders, purchasing support and contracts and pricing) and 216 observations
obtained with the listwise criteria (see Chapter 10 of this volume for a systematic treatment of
missing values).

Figure 9.4, which shows the bar-plot of the response variable ‘Overall satisfaction level’
(q1), highlights that its empirical distribution is slightly negatively skewed. Therefore, as men-
tioned in Section 9.5.1, suitable link functions, a priori, are the logit and the complementary
log-log. After fitting the model with these two links, we noticed that all coefficients have the
expected sign, with the exception of q57. This variable was always highly non-significant, even
after suppressing the observations with the most anomalous combinations with the response.
Hence, we decided to remove q57 from all subsequent analyses.

With regard to the goodness of fit, the R2 indices in equation (9.3) indicated that the
model with the complementary log-log link was more satisfactory. Using this link we both
tested model (9.1) with just the location component and model (9.2) with the scale component.
The introduction of the scale component (in this case only q25 was significant in the scale)
made Nagelkerke’s pseudo-R2 much lower than the original one, (0.499 against 0.818). We
therefore decided to adopt the specification without the scale. We also investigated all the
pairwise interactions among the explanatory variables; we did not find statistical evidence for
their inclusion.

very unsat. fair satisf. very sat.
0

20
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Figure 9.4 Bar-plot of the ‘Overall satisfaction level’ (q1): the ‘satisfied’ (4) category is the
most frequent one.
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Table 9.3 Results of the ordinal generalized linear model: list of thresholds,
list of the variables in the location component, estimated coefficients and rela-
tive p-values.

Estimated coefficients Significance (p-value)

Thresholds
y = 1 (Very unsatisfied) 1.931 0.000
y = 2 (Unsatisfied) 3.335 0.000
y = 3 (Fair) 4.979 0.000
y = 4 (Satisfied) 6.885 0.000

Position
q11 0.533 0.000
q17 0.058 0.488
q25 0.528 0.000
q38 0.258 0.044
q65 0.266 0.018

The estimated coefficients of our final model together with their significance values are
given in Table 9.3. All coefficients, except that for q17, are significant at the 5% level. However,
from the contingency table between variables q1 and q17 (Table 9.4), we can see that there are
12 observations, marked with arrows, showing a global level of satisfaction that is different
from that collected in q17 by three or more categories. If we suppress these, the p-value of
q17 decreases as far as 0.001 and Nagelkerke’s pseudo-R2 becomes equal to 0.971. Therefore,
q17 must be kept in the regression model.

The value of the pseudo-R2 (0.818) in this model is very high even if there is still about
20% of variance that is left unexplained. Now we wish to evaluate the stability of the model in
the presence of some units with an unusual combination of the categories, as we did before for
q1 and q17, taking into account that, as happens in ordinary regression models, an observation
with a large residual does not necessarily mean that it is influential with respect to the fitted
equation, and vice versa. To start this check, in Table 9.5 we report the contingency table

Table 9.4 Contingency table of the 216 respondents of questions 1, ‘Overall satisfaction level
with ABC’, and 17, ‘Overall satisfaction level with the sales support’ in the ABC survey.

q17

Very Unsatisfied Fair Satisfied Very
unsatisfied (1) (2) (3) (4) satisfied (5) Total

q1 Very unsatisfied (1) 7 2 0 1⇐ 0 10
Unsatisfied (2) 1 9 7 0 4⇐ 21
Fair (3) 6 9 19 19 4 57
Satisfied (4) 3⇐ 13 27 37 15 95
Very satisfied (5) 1⇐ 3⇐ 7 12 10 33
Total 18 36 60 69 33 216
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Table 9.5 Contingency table of ‘Overall satisfaction level’ (q1)’ and ‘Predicted class of
satisfaction level’ (PRE).

Predicted class for q1 (PRE)

Very Unsatisfied Fair Satisfied Very
unsatisfied (1) (2) (3) (4) satisfied (5) Total

q1 Very unsatisfied (1) 2 2 5← 1⇐ 0 10
Unsatisfied (2) 1 4 10 6← 0 21
Fair (3) 1← 1 21 34 0 57
Satisfied (4) 0 0 9 77 9 95
Very satisfied (5) 0 0 1← 15 17 33
Total 4 7 46 133 26 216

of the ‘Overall satisfaction level’ (q1)’ and the ‘Predicted class of satisfaction level’ by the
model (PRE). This table clearly shows that the predicted values are in general very close to
the observed levels of satisfaction. Most of the frequencies lie around the main diagonal of
the table.

In Table 9.5, the cells where the absolute difference between predicted and observed class
of satisfaction is greater than 1 are indicated with arrows. For example, in the cell with the
fat open arrow, the model overestimates q1 by three points: it predicts category 4 instead of
category 1. We will label this case with its position in our data subset, 163 (201 in the original
data set). The reason why the model largely misclassifies this unit is partially explained in
Table 9.6: the ranking assigned by the respondent to the dependent variable q1 is lower than the
rankings mainly given by the same respondent to the other questions; q1 is even lower than
the minimum category taken by the other variables. If we apply our ordinal regression model
to the data set without this unit, Nagelkerke’s pseudo-R2 increases from 0.818 to 0.849 and
the p-values of the regression parameters remain approximately invariant.

In Table 9.5, four cells are also indicated by thin arrows, where q1 differs from its predicted
values by two categories: there are six cases where the model predicts 4 instead of 2, five cases
where the model predicts 3 instead of 1, one case where the model predicts 3 instead of 5,
and one case where the model predicts 1 instead of 3. Concerning the first six units for which
q1 = 2 and PRE = 4 (units 33, 96, 101, 128, 186, 207 in the data subset, corresponding to units
39, 121, 127, 157, 229, 256 in the original data set), Table 9.7 shows that also in this case,
the respondents assign to q1 a category almost always lower than or equal to the minimum
assigned for all the other variables. If we now apply our regression model to the data set
without unit 163 and without these six units, Nagelkerke’s pseudo-R2 increases from 0.849
to 0.918.

Table 9.6 Unit 163 (q1 = 1, PRE = 4): the ‘Overall satisfaction level’ (q1) is not in agreement
with the other partial satisfaction levels.

q1 q11 q17 q25 q38 q65

Unit 163 1 2 4 4 3 4
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Table 9.7 Units 33, 96, 101, 128, 186, 207 (q1 = 2, PRE = 4). In all cases the ‘Overall
satisfaction level’ (q1) is not in agreement with the other satisfaction levels.

q1 q11 q17 q25 q38 q65

Unit 33 2 4 5 3 3 3
Unit 96 2 4 5 4 3 3
Unit 101 2 5 2 1 5 4
Unit 128 2 5 5 3 2 5
Unit 186 2 3 3 5 3 2
Unit 207 2 4 2 3 3 3

The same considerations about the inconsistency of the overall level of satisfaction with
the partial levels are valid for the other three groups of units for which q1 = 1 and PRE = 3,
q1 = 5 and PRE = 3, and q1 = 3 and PRE = 1, as is clear from Tables 9.8–9.10. If we apply
our regression model to the data set without unit 163 and without respectively the units shown
in Tables 9.8, 9.9 and 9.10, Nagelkerke’s pseudo-R2 increases from 0.849 to 0.883, 0.918 and
0.888. If, instead, we drop all 14 cases mentioned from the data set, Nagelkerke’s pseudo-R2

increases as far as 0.967.
The units discussed so far can be considered influential (anomalous) with respect to our

ordinal regression model. For a better interpretation of these results, we can also investigate
the observations with anomalous combination of the categories, leaving aside the defined
model. Taking all the variables on the same level, we could, for example, compare for each
observation i the ‘Overall satisfaction level’ q1 with the median of the other five variables, as
follows:

d(i) = q1(i) − median[q11(i), q17(i), q25(i), q38(i), q65(i)] (9.4)

The result of this proposal on the ABC data subset is given in Figure 9.5. The x-axis is the
observation number while the y-axis plots quantity (9.4). The observations of interest are
labelled with their data subset row number. As expected, for unit 163, which was the most
anomalous in Table 9.5, d(i) takes a very low value. Among the six units of Table 9.7, for
which q1 = 2 and PRE = 4, units 128, 96 and 101 deserve a mention for the low values of d(i).
Of the other five units reported in Table 9.8 for which q1 = 1 and PRE = 3, units 22, 49 and

Table 9.8 Units 14, 22, 49, 70, 77 of our data subset (units 14, 25, 63, 90, 98 in the original
data set): q1 = 1 and PRE = 3. In most of the cases the ‘Overall satisfaction level’ (q1) is not
in agreement with the other satisfaction levels.

q1 q11 q17 q25 q38 q65

Unit 14 1 3 1 2 3 2
Unit 22 1 4 1 2 3 3
Unit 49 1 3 1 4 3 1
Unit 70 1 1 1 5 3 1
Unit 77 1 1 2 4 3 3
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Table 9.9 Unit 124 of our data subset (unit 152 in the original data set): q1 = 5 and PRE = 3.
The ‘Overall satisfaction level’ (q1) is higher than the maximum of the partial satisfaction
levels.

q1 q11 q17 q25 q38 q65

Unit 124 5 3 2 4 3 2

Table 9.10 Unit 60 of our data subset (unit 79 in the original data set): q1 = 3 and PRE = 1.
The ‘Overall satisfaction level’ (q1) is higher than the maximum of the partial satisfaction
levels.

q1 q11 q17 q25 q38 q65

Unit 60 3 2 2 1 1 1

77 take low values. Finally, the values of d(i) for observations 124 and 60, for which q1 = 5
and PRE = 3 and q1 = 3 and PRE = 1, are very large.

One of the highest values reported in Figure 9.5 corresponds to unit 135 (unit 164 in the
original data set), which was not identified as anomalous in Table 9.5 as it belongs to the
combination q1 = 5 and PRE = 4. As clearly shown by Table 9.11, the value assigned by
the respondent to the ‘Overall satisfaction level’ (q1) is greater than the rankings mainly given
by the same respondent to the other questions. However, in our regression model, the largest
coefficients are those relative to variables q11 and q25. For them unit 135 takes high categories
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Figure 9.5 Difference between q1 and the median of the other five variables for each obser-
vation of the data subset.
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Table 9.11 Unit 135 (q1 = 5, PRE = 4). Only variables q11 and q25 are in line with q1.

q1 q11 q17 q25 q38 q65

Unit 135 5 4 1 5 2 3

(4 and 5, respectively). Therefore, while an exploratory analysis would suggest that unit 135
is anomalous, with our regression analysis such a unit appears to be coherent with the model.
The same considerations could be entertained for all the other high values that are plotted, but
not labelled.

Remark 1 In Section 9.3, using an exploratory data analysis approach, we defined as outliers
for ordinal variables the units which presented unusual combinations of the categories. Here,
using a modelling approach, we can consider as outliers the units which deviate markedly
from the fitted model, that is, those with the largest residuals.

Remark 2 In this chapter we did not consider the approach of outlier detection based on
robust cluster analysis (see Riani et al., 2010).

9.6 Summary

In this chapter we have investigated the topics of robustness and multivariate outlier detection
for ordinal data. In the first part of the chapter we presented an overview of methods for outlier
detection for continuous data in regression. In this context we illustrated an example of a data
set with masking effects and showed the difficulties presented by these kinds of data. In the
second part of the chapter, we suggested a definition of outliers in ordinal data and proposed
methods for identifying them. We also recalled the ordinal regression model and applied it
to the ABC 2010 ACSS data, previously cleansed of missing values. We highlighted how the
presence of anomalous observations can lead to erroneous conclusions about the choice of the
best model. Having chosen the final model, we analysed its stability and highlighted a series
of potential anomalous/influential observations.
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