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Abstract:1 In this paper we suggest a non parametric generalization of the 
Mahalanobis distance which enables to take into account the di:ffering spread 
of the data in the di:fferent directions. The output is an easy to handle metric 
which can be conveniently used both in an exploratory stage of the analysis for 
the detection of multivariate outliers and successively as a tool for non para
metric discriminant analysis, multidimensional scaling and cluster analysis. 
In addition, the use of this metric can provide information about multivariate 
transformations and multiple outliers. 
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l Introduction 

The distance concept plays an important role in many topics of multivariate 
analysis. One of the most widely used distance measures is the one of Ma
halanobis (dM) (e. g. Dasgupta, 1993). This distance is appropriate for use 
in sample spaces where there exist di:fferential variances and correlations be
tween variables. In this metric, contours of equi-distance in the p-dimensionai 
space are p-dimensionai hyperellipsoids. Consequently, when we use dM we 
implicitly assume that the spread of the data in the di:fferent directions is 
symmetric. Therefore, in presence of highly asymmetric data the use of this 
distance seems questionable. More generally, ih a preliminary stage of the 
analysis it seeins preferable to use a metric which does not assume an un
derlying distribution. Finally, even if the ellipticity hypothesis is satisfied, 
in order to construct dM we stili have to face the problem of estimating the 
means of the variables and the covariance rnatrix. The breakdown point of 
dM is O and the presence of multiple outliers can cause masking and swamping 
problerns ( e.g. Barnett and Lewis, 1994). 

The purpose of this paper is to suggest a simple generalization of dM which: 
(a) is non parametric, (b) is robust to the presence of atypical observations, (c) 
keeps into account the di:ffering spread of the data in the di:fferent directions, 
(d) reduces to the usual dM when the ellipticity hypothesis is satisfied an d the 
data are not contarninated. ~ 

1The program for computing the non parametric distance suggested in this paper is 
available upon request. W e can be contacted a t statdue!Dipruni v. cee. unipr. i t or 
zani!Dipruni v. cee. unipr. i t. The authors wish to thank Aldo Corbellini for program
ìnìng help. 
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2 Description ofthe method 

First let us consider ·the case in wlÌich the number of variables· (p). is equal 
to 2. Our approach starts de:fi.ning a non parametric bivariate centrai region 
and a robust centroid. As pointed out by Riani et al. (1998), a natural and 
completely ~on parametric way for de:fi.ning a centrai region in JR2 is through 
the use of the so called convex hull peeling. Successive convex hulls are peeled 
until the :fi.rst one is obtained which includes not more than 50% of the data 
( and so asymptotically half of the data). This 50%-hull is smoothed using a 
B-spline, constructed from cubie polynomial pieces, which uses the vertices of 
the 50%-hull to provide information about the location of the knots. (From 
now on this spline will be called 50%-spline). Zani et al. (1998) discuss 
several choices of a robust centroid. In this work we use the intersection 
of the two least squares lines built with the observations which lie inside 
or at the boundary of the 50%-spline. As an illustration of the suggested 
approach let us consider the data referred to 160 European regions reported in 
Figure l. On the x-a:xis we have the lndex Numbers of GNP per inhabitant, 

Figure 1: Bivariate boxplot of Unemployment rate in% versus lndex Numbers 
of GNP per inhabitant for 160 European regions (50% and 99% contours). 
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PPS (EUR 15=100). On the y-a:xis we have the unemployment rate in % 
(Source: Eurostat, REGIO, 1996). Figure l also reports the 50%-spline. As 
emerges clearly from the plot, the spread of the data in the differing directions 
is different, therefore the traditional approach based on dM does not seem to 
be appropriate. Two straight lines in correspondence of the bivariate centroid 
have also been drawn. Zani et al., (1998) show that in order to obtain.11n outer 
contour which under the assumption of bivariate normality leaves out~ide a 
percentage of observations dose to 1%, we ~ust multiply the distance fro~ the 
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50%-spline to the robust center by 1.68. Using this coefficient we obtained 
the outermost contour reported in Figure l. The units which lie outside 
th~. bivariate contour can be interpreted as atypical. The 50%cspline and the 
outer:rp.ost contour can be interpreted as non parametric equidistance contours 
from thc;,: center. In this way we can take into account non parametrically , 
the differìng spread of the data. This leads us to define a new metric. Let 
us consider separately the distance of one point from the centroid and the 
distance between two generic points. 

Distance from the centroid in JR2 

In our metric the observations which lie on the 50%-spline have the same 
distance from the centroid. In order to define a measure unit, without loss of 
generality we can set equal to l the distance {rom the center of a point which 
lies on the 50%-spline. The distance of every other observation can be based 
on the former unit of measure. For example, in Figure 2 let us consider the 

Figure 2: Example of computation of the distance from the robust centroid 
for 4 of the European regions reported in Figure l (Standardized variables ). 
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straight line OA passing through the robust centroid and point A. Let point 
A' be the intersection of segment OA with the 50%-spline. The distance OA 
ìit this case is 2.55 times the distance OA'. Therefore in our metric point A lies 
at a distance 2.55 from the origin. In general: the distance from the centroid 
ofevery point K depends on the ratio between OK and OH where H is the 
ìn:tersection of the straight line passing through O K with the 50%-spline. In 
Figure 2 units A e B respectively correspond to the regions Extremadura 
(~) and Uusimaa (FIN). Note that using the standardized Euclidean distance 
J~int B would be much closer to the center than point A. Using our metric 
~ff-iratio OB/OB' is 2.50. This implies that i~ \ve take into account the 
;~tter:l·lJ Lg spread of the data in the different directions these two regions have 
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Figure 3: Plot of the poi:nts of Figure 2 in the transformed space """ .... "'''"'w''" 
suggested metric (The two superimposed circumferences define equidist 
contours from the robust centroid). 
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approximately the same distance. Following similar arguments we can claim 
that point C (Ceuta y Melilla, E) has a distance from the centroid (3.32) 
which is exactly equal to that of point D (Bremen, D). 

;~ 

In Table l we compare for units A,B, C an d D our non parametric distance 
( dRz) from the centroid with the Euclidean one (d) ( using standardized vari
ables) and the one of Mahalanobis (dM). This table shows that for units A 
and C the values of dRz and dM are smaller than those produced by the Eu
clidean distance. The opposi te happens for units B an d D. In fact dRz an d 
dM correctly keep into account the negative correlation (r = -0.359) between 
the two variables. The values of our metric compared to dM are smaller for 
units A and C and greater for the two remaining units. Our metric is based 
on non parametri c contours an d enables t o reduce (increase) the distance for 
the units located in the directions where the spread of the data is high (low). 
The assumption of dM of symmetric spread usually is not met in practise. 
For example, in the data reported in Figure l it is clear that the spread of 
the data in the South-W est direction is much more evident than t ha t in the 
North-East direction. The ellipses (here not repo~ted for lack of space) which 
represent the equidistance contours in the Mahalanobis metric, treat in the 
same way the units located South-West with those located North~East. This 
explains why for example, the value of dRz for unit D is much bigger than 
that reported by dM. 
Remark 1: If the underlying hypothesis of elliptic distribution is truè the 
50%-spline tends to become an ellipse (Atkinson and Riani, 1997). In addi
tion, convex hull peeling is invariant un der linear transformations of the data . . 
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Table l: Squared distances from the centroid of four regions using different 
metrics. ·. 

d~z d2 
M 

d2 
A: Extremadura 6.528 11.070 13.041 
B: Uusimaa 6.275 2.064 1.331 
C: Ceuta y Melilla 11.050 14.139 14.961 
D: Bremen 11.038 5.573 4.935 

Therefore the suggested metric simply reduces to the dM when the ellipticity 
hypothesis is satisfied and the data are not contaminated. 

Remark 2: In arder to calcuiate the former distances, in our metric we sim
ply need an estimate of the centroid but we do not have to estimate either 
dispersion or correiation parameters. 

Remark 3: It is possible t o use a different spline contour ( for exampie a 60%
spline or 75%-spline). With this choice the shape of the inner region may 
adapt more to the spread of the units Iying far from the centroid. However 
this results jn a decrease of robustness. 

Figure 3 shows the 160 European regions of Figure l after eliminating non 
parametrically the differing spred of the data in the various directions. In 
this new space both unit C and D lie on the same circumference centered 
on the robust centroid whose radius is 3.32. Similarly, units A and B lie 
approximateiy on the circumference whose radius is 2.5. 
Distance between two points in IR? 
In our metric the splines which define the equidistant contours are transformed 
into circles. This implies, for exampie, that the units which have a distance 
equai to 3.32 from the robust center after the transformation lie on a circle 
with radius 3.32. In the transformed space (Figure 3) Euclidean distances 
referring to different directions are dirediy com:parabie because we have re
moved (non parametrically) the different spread of the data in the various 
directions. Therefore our metric is equal to the Euclidean distance between 
two points in the transformed space. 

Extensions top-dimensionai data 

In presence of p-dimensionai data the situation becomes more complicated 
because we cannot reiy on the graphical representation anymore. With the 
purpose of defining a distance measure which, with well behaved data, reduces 
to the dM we have to consider pairs of variabies such that the sum· of the 
Ifl-'arginal bivariate dM is equai to the overall dM using the whoie set of p
l:~i~l;>,les. It is possibie to show that the p-variate dM can be expressed as 
the ,sum of p/2 bivariate dM if p is even and as the sum of [p/2] bivariate 

vh~~è a l1nivariate dM if p is odd. For example if p = 3, ( considering 
· the variabies in standardized form) using the matrix inversion 
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lemma it is possible to prove that the squared Mahaianobis distance of the 
trivariate vector x= (a:,y,z)' from O can be decomposed as: 

1~_1 a:2 + y2 - 2p.,ya:y [z.Jl..:::. P;y- a:pu.y· f!- P~z- YPyu)l- P;z] 2 

x~ x= +~~------------V~~~--------~----~ 
l- P;y i}Ji 

(1) 
where }J is the correlation matrix and Pil.k denotes the partiai correlation 
coefficient between variables j and l given variable k. 

The first term on the right hand side of equation (l) is nothing but the squared 
marginai dM between the :first two variables. The second term can be shown 
to be the squared dM from O ofthe univariate variable zi(a:,y): 

l( ) [(P:.z- P:.yPyz)a: + (Pyz- p.,yp.,z)Y] 
z a:, y = z- 2 

. 1- P.,y 
(2) 

In the case of a univariate random variable the centrai region is given by 
the interquartile range and the robust center is the median. Similarly to the 
bivariate case, we can set equal to l the distance between the :first (third) 
quartile and the median and we can use this length for de:fining the other 
distances. With 3 variables, therefore, we initially have to computè our dis
tance using the :first two variables, then we have to consider the transformed 
variable zi( a:, y ). If the ellipticity hypothesis is satis:fied and the data are not 
contaminated the simple sum of these two distances reduces to the global dM. 
With elliptic distributions it is immaterial the order in which the variables 
are considered. Finally, in presence of asymmetric data we end up with a 
metric which adapts non parametrically to the various spread of the data in 
the different directions. 
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