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Abstract

This paper extends the forward search technique to the analysis of structural time series data.
It provides a series of powerful new forward plots that use information from the whole sample
to display the effect of each observation on a wide variety of aspects of the fitted model and
shows how the forward search, free from masking and swamping problems, can detect the main
underlying features of the series under study (masked multiple outliers, level shifts or transitory
changes). The effectiveness of the suggested approach is shown through the analysis of real and
simulated data.
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1 Introduction

The forward search (FS) is a powerful general method for detecting multiple
masked outliers, for determining their effects on models fitted to data and for
detecting systematic model inadequacy. This method was originally introduced
for models which assumed independent observations: linear and non linear re-
gression (Atkinson and Riani, 2000, 2002), generalized linear models (Atkinson
and Riani, 2001) and multivariate analysis (Riani and Atkinson, 2001). In this
paper we extend the forward search technique to the analysis of structural time
series data. The basic ingredients of the FS are a robust start from an outlier-
free subset of observations, a criterion for progressing in the search, which allows
the subset to increase in size by one or more observations at each step, and a
set of diagnostic tools that are monitored along the search. The robustness of
the FS stems from the very definition of its algorithm, starting from “good”
data points and including outliers at the end of the procedure. Computation
of high-breakdown estimators (e.g. Hampel, et al., 1986; Rousseeuw and Bas-
set, 1991) is not required, except possibly at the starting stage. Indeed, the
application of efficient likelihood or moment-based methods at subsequent steps
of the FS provides the analyst with more powerful tools than those obtained
via traditional high-breakdown estimation. The flexibility of the FS makes
this procedure suited for extensions to areas other than multiple regression and
multivariate analysis. This is especially true in time series, where it is often nec-
essary to detect and model sudden or unexpected events. It is well known that
outliers or structural changes in the observed time series may seriously damage
identification and estimation of the suggested ARIMA or structural model (e.g.
Koopman and Harvey, 1992; Chen and Liu, 1993), because such occurrences can
introduce serious bias in the sample autocorrelation function. In time series the
standard procedures for automatic outlier detection and correction consider four
types of outliers, namely: additive (AO), innovational (I0), level shift (LS), and
transitory change (TC) (Tsay, 1986; Chen and Liu, 1993; De Jong and Penzer,
1998). The AO represents a single spurious observation, the IO a pulse shock to
the noise sequence which propagates to the observed time series, the LS a step
function and the TC a spike that takes a few periods to disappear.

The main drawback of the traditional procedures for detecting outliers in
time series is that they start with the specification of a model for the observed
series as if there were no outliers. Given that each kind of outlier is supposed to
be generated by an ARIMA formulation, the model fitted to all the observations
is refitted under the null assumption there is an outlier at time ¢. This is done
for each type of outlier assuming that each observation in turn y;, t =1,...,T
is an atypical observation. In other words, the ARIMA filter II = ¢(B)/6(B)
based on the parameters estimated using all the observations, is repeatedly
used T x 4 times to obtain a statistic A; for each observation and each type
of outlier: AQO, 10, LS and TC (e.g Tsay, 1986 or Gomez and Maravall, 1994).
The maximum value of A\; is compared with a predetermined critical value C' to
decide whether a potential outlier is present in the time series. Once an outlier
is found, the filter II is revised and reapplied for each observation and for each
type of outlier in an iterative way. These procedures do not detect the k outliers
at once, but proceed in several iterations detecting them one by one. In order
to avoid these problems and to be able to detect stretches of over influential
observations, Bruce and Martin (1989) suggested leave-k-out diagnostics. The
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parameters of the model fitted to the full data set are compared with those
generated by fitting the model to the data when a stretch of k points are taken
to be missing. This approach has been extended to state space models by
Proietti (2003). This author shows in an elegant way how to use a reverse run
of the Kalman filter on the smoothing error to compute leave-k-out diagnostics.
These methods however, become computationally infeasible when k is large and
the points are not consecutive, and may still suffer from masking, swamping
or smearing effects if the number of outliers is greater than k. Finally, these
approaches start with estimated parameters based on all T observations, as if
no outlier were present in the data. So, the methods will be able to discover
the real structure of the data only if the joint effect of the atypical observations
does not destroy the validity of the estimate of the covariance structure of the
data.

Beyond the problem of the detection of atypical observations, another im-
portant issue concerns the effect of individual observations on the maximum
likelihood estimate of the parameters. In other words, because of the way in
which models are fitted, we lose information about the effect of individual obser-
vations on inferences about the form and parameters of the model. For example,
it is very important to know whether a component (trend, seasonal or cycle)
becomes deterministic, if we exclude certain observations from the estimation
process. Similarly, it is useful to investigate the stability of the estimate of the
period of the suggested stochastic cycle. More generally: it is useful to know
which estimates of the hyperparameters are stable and which are those affected
by particular observations. In this paper we provide a series of powerful new
forward plots that use information from the whole sample to display the effect
of each observation on a wide variety of aspects of the fitted model and we show
how the forward search can detect the main underlying features of the series
under study (masked multiple outliers, level shifts or transitory changes).

The structure of the paper is as follows. In section 2, given that in our
approach we repeatedly use the diffuse Kalman filter to estimate the hyperpa-
rameters in each step of the search, we briefly review the state-space formulation
and give some details about the way we initialize the Kalman filter. In section
3 we show how the forward search routines can be extended to the analysis of
time series data using the diffuse Kalman filter with missing observations. In
section 4 we apply the suggested procedure to real and simulated time series.
Section 5 contains concluding remarks and directions for future research.

2 Non stationary state space form

As is well known, the state-space form and the Kalman filter provide a unifying
tool for state-space model likelihood evaluation and prediction. Both ARIMA
and structural time series models can be put into the state space formulation
and can be estimated using the Kalman filter. The vector time series y; (t =
1,2,...,T), with N elements is said to be generated by a state space model if

ye = Zyay + Xifr + Grer (2.1)
agr1 = Tyou + Wi + Hie (2.2)

where ¢, ~ WN(0,02I). Generally, the system matrices Z;, Gy, Ty, Hy, X; and
Wy are functionally related to a vector of hyperparameters 6. If vector f; in
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equations (2.1) and (2.2) is equal to zero and a; ~ N(a1‘0,02P1‘0) with ay)o,
Py and o2 known, the standard Kalman filter provides a recursive algorithm
for computing the minimum mean squared error estimator of «; conditional on
Yty -5 Yt—1

ayp—1 = Blolys, ... ye-1)

and its mean squared error (MSE)
MSE(aﬂt—l) = E[(at|t71 - O‘t)(at\tfl - Oét)/|y1a e 7yt—1] = Pt\tfl-
The Kalman filter is the set of recursions

v = Y — ZiQyje—1 Fy = Zi Py 1 Z{ + GiG (2.3)
qt = qt—1 + Uéthlvt K; = (Ttptlt—IZ£ + HtGQ)F;l (2~4)
a1 = Toage—1 + Ky Py = Ty Py Ty + HiHp — K F K (2.5)

with go = 0. The filter innovations (one step ahead prediction errors) are indi-
cated with vy and their variance with F; = var(v) = var{y:—E(yt|y1, . .-, ¥+—1)}
These two quantities form the necessary ingredients for the computation of the

loglikelihood
T

1) = —05NTIno* + Y In|F| + 0 2qr. (2.6)

t=1

The maximum likelihood estimate of o2 in equation (2.6) is

T —
2 _ 4r _ DO
NT NT ’

Vector B in equations (2.1) and (2.2) may contain random, fixed or diffuse
effects. An element is said to be diffuse if its variance tends to infinity. The
diffuse assumption reflects parameter uncertainty and needs to be applied every
time a time series model is nonstationary. In this last case the classical approach
(e.g. Harvey, 1989) suggests starting the filter with Pyjo = wI, with s equal
to a large but finite number. This approximation, however, especially in the
context of the forward search which requires a high number of computations,
produces noticeable numerical problems. In order to avoid numerical errors
in the initialization of the Kalman filter, we used the approach suggested by
De Jong and Chu Chun Lin (1994a, 1994b) as follows. If d is the number of
nonstationary elements and k is the number of explanatory variables, up to
observation yg+x we run the so called diffuse Kalman filter which is given by
the following recursions

Vi =(0,y1) — Zt Ayp—1 Fy = ZiPyy 1 Z; + GG} (2.7)

Qi = Qi +V{F'WVe Ky = (TiPy 1 Z + HiGy (2.8)
Appre = TeAy—1 + KtV Py = TyPyy1T{ + HH; — K, FL K. (2.9)

Matrix A;;—; can be partitioned as (Ai|t71a?|t—1) and has d + k 4+ 1 columns;

a?l +—q (the last column of A;;_;) is the standard Kalman filter recursion ini-
tialized with the variance covariance matrix of the non-stationary elements set
equal to zero. The first k+d columns of Ay, (Ai|t71) are obtained by applying
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the same Kalman filter to the zero observations which make up the first d + k
columns of matrix (0,y;). In the calculation used in this paper we used the dif-
fuse Kalman filter up to step d+k and then collapse it to the usual Kalman filter.
The collapse is realized using the appropriate blocks of the (d+k+1) x (d+k+1)
matrix Qg+r. More precisely

0 /
davk  Sd+k
Qat+k = ( + +

Sd+k QLJ,_]C

where QLk has dimension (d 4+ k) x (d + k). The appropriate starting values
can be obtained from the output of the diffuse Kalman filter as!

—1
o i i
Gatktlldrk =  Oqihiildk — Aasrtdrr (Qd+k> Sd-+k (2.10)
’

_ 0 T 1
Pd+k+1\d+k - Pd+k+1\d+k + Ad+k+1\d+k (Qd+k) Ad+k+1|d+k' (2.11)

The resulting likelihood becomes

T
1(0) = —0.5N(T —d — k)Ino? + Z In|Fy| + o 2qr
t=d+k+1

with dd+k = 0.

When a set of observations is missing, the vector v; and the matrix K, are
set to zero for these values (t =d+1,...,T), that is v; = 0 and K; = 0 (e.g.
Harvey and Pierse, 1984) and the Kalman updates become

A1)t = Ttat|t—1 Pt+1|t = Ttpt|t—1Tf,/ + HtHf{' (2-12)

This simple treatment of missing observations makes the state space approach
ideal for the forward search algorithm which requires repeated estimation on
subsets of data non necessarily contiguous.

3 The forward search in time series

The forward search is made up of three steps: choice of the initial subset,
progressing in the search and diagnostic monitoring. In the following subsections
we will examine in detail these three steps.

3.1 Choice of the initial subset

Details of the forward search for regression on a single response variable are
given in Atkinson and Riani (2000). The method starts by fitting a small,
robustly chosen, subset of m of the n observations to the data. In time series
the initial subset can be chosen among k blocks of contiguous observations of
fixed dimension b. The idea of block sampling is to retain the same dependence
structure as the original data set (e.g. Haegerty and Lumley, 2000). To find

'In equations (2.10) and (2.11) we supposed that QLHC is invertible. If this is not the case
we can collapse the diffuse Kalman filter to the usual Kalman filter in the first step in which
this matrix becomes invertible.
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the initial subset we perform an exhaustive search of all possible blocks and
choose the one which satisfies a least median of squares criterion. Specifically,
if the suggested time series model is non-stationary of order d (without loss of
generality we suppose there are no regression effects), we can divide the last
(T — d) observations of the time series into & subsamples, each made up of the
first d initial data yi,...,yq plus a set of [(T — d)/k] contiguous observations
where [-] is the integer part of a number. If (T'—d)/k is an integer we have exactly
k subsamples. In the general case we have k + 1 subsamples, the first & of size
d+[(T—d)/k], and the last of size T —[(T —d)/k]k. Without loss of generality in

this paper we assume that (T — d)/k = b (say) is an integer. The units forming

b+d
Subsample r=1, 2a SRR ka say Sﬁ * )7 are Yi, .-+ Yd, Yd+1+(r—1)bs - - - s Yd+or-

Another possibility to perform block sampling would be to extract without
replacement [ observations from the last T' — d. If for example observation u is
selected we extract all observations from u to w +r. In order to form the initial
subset we delete the eventual duplicate units.

Now, let v, o+a) and F, co+a) be respectively the vector of one step ahead
prediction errors and their covariance matrix for time unit ¢ given observations
. q(btd) . . . .. .
in Sp . For a non-stationary time series of order d, generalizing equation

(2.6), minus twice the log of the normal likelihood based on the observations
(b+d)

forming Sy can be written as
d+rb
(Og010) = —05NbIng” + Y o st F Joiay goro. (3.1)
t=d+1+(r—1)b o
. . . d+rb _

Here o2 is estimated using ngbﬂ“ = D st (r— 1) v;,sﬁ”’” Ft);£h+d)vt,sf‘b+d) /(ND).
The symbol és(b+d) denotes the MLE of the hyperparameters found using only
observations belonging to S£b+d). Now let ﬁt7 gt = 6’;;!;4»2@ thg‘/id)vt St
t=d+1,...,T be the vector of one step ahead standardized prediction errors
for each unit based on the hyperparameters estimated using observations be-

longing to Sﬁb+d) and let v (1},50+ be the ¢-th ordered residual. We take as our

initial subset of observations the (b + d)-tuple which satisfies
N
mrinzlﬁi[med]}’siﬂd)(j) r=1,...,k (3.2)
i=

where ﬁ?[t]},sﬁﬂd) (j) is the jth element of vector iy, 60+ and med = [(T —
d)/2].

Criterion (3.2) extends the least median of squares method for regression
models with independent errors (Rousseeuw, 1984) and univariate response to
correlated multivariate observations. In this case, however, standardized resid-
uals instead of raw residuals are considered. In conclusion, we take as our
initial subset the stretch of data which minimizes the sum of the medians of
the squared one step ahead standardized prediction residuals. As the number of
k subsamples considered increases, the probability of having at least an initial
subset of data which does not contain outliers increases. On the other hand, if
the size of the initial subsets is too small, the estimates of the hyperparameters
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can be unstable. We suggest a value of b &~ /T to ensure a balance between
the statistical properties of the estimated hyperparameters and the robustness
of the method. As we see in the examples the choice of the initial subset is not
crucial, because in the majority of cases the final part of the search (which is
certainly the most interesting) is unaffected by this choice.

3.2 Progressing in the search

Given a subset of dimension m > b+d, m =b+d,...,T — 1, the FS in time
series moves to dimension m + 1 by selecting the m + 1 — d observations with
the smallest squared standardized prediction residuals, the observations being
chosen by ordering all (T' — d) squared residuals 5S’S(m) = v;’s(m)Ft:;(m)vt’s(m),
t=d+1,...,T. In order to initialize the Kalman filter the first d observations
are always kept in the subset at each step of the forward search.

More precisely at step m the likelihood which is maximized is given by

(O5m) = —05N(m—d)lno®+ Y v s Fy gm Ve, 50m - (3.3)
teS(m)

The summation in equation (3.3) includes all the observations in the subset
excluding the first d of the time series. Similarly, o? is estimated using only
the units forming S™). It is important to distinguish the residuals used for
plotting and those used inside the Kalman filter. The units not included in the
subset are treated as missing, so for these observations K = 0 and v = 0 and the
update is skipped. However, for plotting and progressing in the search the one
step ahead prediction values vy and their covariance matrix F; are computed for
all units. So, given a subset of size m, we have (T'—d) N standardized prediction
residuals.

Similarly to what happens in multivariate analysis when the Mahalanobis
distances are monitored, if the subset size is small the units not included will
have a very high Mahalanobis distance which tends to decrease during the for-
ward search. In order to have stable curves throughout the search Atkinson
and Riani (2000) in each step scale the residuals with the final estimate of o
based on n observations. In time series if we want stable trajectories we may
scale standardized residuals in each step with the square root of the generalized
prediction error variance (see for example Harvey, 1989; p. 445) based on all
observations. Such a rescaling increases emphasis on the later parts of forward
plots and produces more stable trajectories (Atkinson, Riani and Cerioli, 2003).

As concerns the computational cost of the forward search, if we take b = /T,
in order to find the initial subset we must fit /7' models each based on VT
observations. Given we have T — /T updates, the parameters are reestimated
VT + T — T = T times. In traditional backwards methods, if each time we
reestimate the parameters and we stop at step T — k, for each type of outlier the
model must be recomputed (k + 1) x T times. Finally, if we consider multiple
deletion and reestimation of the parameters, the model must be recomputed
Z?:o (?) times. In addition, the backwards approach may fail to reveal the real
structure of the data due to the well known masking and swamping problems.
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3.3 Diagnostic monitoring

A major advantage of the F'S approach is to provide the user with a number of
informative pictures displaying all the diagnostics computed along the search.
For instance, the anomalous behaviour of outliers or level shifts is clearly re-
vealed by the individual trajectories in the forward plot of standardized one
step ahead prediction errors, even when standard deletion diagnostics suffer
from masking. An additional bonus of the forward search algorithm is that it
is often possible to rank the observations according to their entrance step into
S(m) This gives an ordering of the data according to their degree of agreement
with the null model, with observations furthest from it joining S in the last
steps of the procedure. Finally, analyzing the individual trajectories of the units
along the F'S, we can detect the relationships among the observations: this helps
to distinguish between the different types of outliers and interventions.

As in regression (Atkinson and Riani, 2000; p. 34), we found it useful to
monitor the maximum standardized prediction residual for the units included in
the subset and the minimum for those which are outside. While the plot of the
maximum is characterized by an upward jump when the first outlier is included
in the subset, the plot of minimum shows an upward jump in the step prior to
the inclusion of the first atypical observation in the subset.

4 Some numerical work

As an illustration of the suggested approach, in this section we apply the forward
search to some real and contaminated time series. In section 4.1 we consider
the monthly Italian Industrial Production Index (IPI) from January 1981 to
December 1996. We have used this series because these data have already been
analyzed with different purposes by various authors (e.g. Kaiser and Maravall,
2001). In section 4.2 we see how the suggested approach responds to an arti-
ficial temporary level shift. In section 4.3 we analyze the series of US index of
industrial production for the textile sector.

4.1 TItalian industrial production index

The purpose of this section is to show in practice the additional gain of in-
formation which comes from the forward search. In this section we consider
two versions of IPI, the series given by OECD which is adjusted for calendar
effects (from now on OECD series) and the original series. Figure 1 shows that
this series exhibits a slight increasing trend and a strong seasonal pattern with
sharp peaks during the month of August. As expected, the variability of the
seasonal peaks seems much more pronounced in the original series (right panel
of Figure 1).

We start the analysis applying the basic structural model (Harvey, 1989)
with trigonometric seasonality to the OECD series. The basic structural model
can be expressed as

Y = Ht + 7 + €

where p; is the level of the trend component, ; is the seasonal component and
the irregular ¢, is NID(0,02). The general formulation for the trend is locally
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Figure 1: Left panel Italian industrial production adjusted by OECD. Right
panel: original Italian industrial production series

linear

e = pe—1+ B+ m
Br = Bi—1+G,

where 1; and (; are mutually uncorrelated white noise disturbances with zero
mean and variances 2 = qnaé2 and 02 = qco?. As it is well known, the effect
of n; is to allow the level of the trend to shift up and down, while (; allows the
slope to change. The larger the variances ¢, and g¢, the greater the stochastic
movements in the trend relative to the variability of the irregular component
€;. The seasonal pattern 7; is usually modelled as the sum of [s/2] cyclical
components allowed to vary over time with common variance o2 = g,02. This
model can easily be put in the state form described in equations (2.1) and (2.2),
(see for example Durbin and Koopman, 2001). Given that the basic structural
model for monthly time series has 13 non-stationary elements, we run the diffuse
Kalman filter up to step m = 13 to find appropriate starting values for the
remaining 7' — 13 observations.

Figure 2 is a classical representation used in forward search analysis to mon-
itor residuals. It shows the one step ahead standardized prediction errors for
each unit in the last 60 steps. For each m the residual have been scaled with
the estimate of o based on S(™) but using all (T — d) observations. Each line
refers to a time period. The plot shows that throughout the search (with the
exception of observation 140 - August 1992) all cases have standardized predic-
tion residuals inside the 99% asymptotic confidence bands (-2.58, 2.58). This
plot clearly shows that there are no masked outliers in the series.

Another question of interest the FS easily enables to answer concerns the
stability of the estimates of the hyperparameters. In this example the final
values when m = n are ¢, = 6,/62 = 0.1783, §c = 62/67 = 0.0030 and
4w = 62 /6% = 0.0046. The typical questions are: what are the most influential
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Figure 2: Italian industrial production index corrected by OECD: monitoring
of the one step ahead standardized prediction residuals

observations in the estimate of ¢,), gc or q.,? Is the stochastic seasonality diffused
throughout the data or is it due to the presence of particular observations?
Figure 3, which shows the monitoring of estimates of the ¢ ratios along the last
50 steps of the forward search, enables us to answer all these questions. The left
panel shows that the estimate of g, seems to fluctuate in the interval 0.1 and
0.7 but is always greater than 0 throughout the search. The center panel shows
that the variability of the slope movements seem negligible with respect to the
irregular in steps 181-186. The inclusion of the last 6 units seems to bring the
estimate to values similar to those seen in steps 160-180. A benefit from the
forward search is that it enables to link the effect of each unit on the estimate
of the hyperparameters. If the model is correctly specified the trajectories of
the estimates of the hyperparamters should fluctuate around a certain threshold
without particular pattern. This is precisely what happens in this example.
We conclude the analysis of this series with two plots. Figure 4 shows the
monitoring of squared maximum standardized residual among the units belong-
ing to the subset (left panel) and the squared minimum standardized one step
ahead prediction errors among the observations not included in the subset (right
panel). These two plots are very useful for outlier detection, because the first
atypical observation which is included in the subset generally causes an upward
jump in the plot which monitors the maximum residual in the subset. On the
other hand, the plot which monitors the minimum residuals shows an upward
jump in the step prior to the inclusion of the first outlier. Figure 4 shows that
these two curves increase smoothly and that there are not sudden jumps. The
conclusion is that in the OECD series there are no masked outliers. In this case,
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Figure 3: Italian industrial production index corrected by OECD: monitoring
of the estimates of the hyperparameters

the F'S simply provides an ordering of the data according to their agreement with
the suggested model.
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Figure 4: Italian industrial production index corrected by OECD: monitoring
of the maximum squared standardized residual among the units belonging to
the subset and minimum squared standardized residual among the units outside
the subset

Let us now move to the analysis of the original industrial production index.

Figure 5 shows the monitoring of squared maximum and minimum standardized
residuals for this new series and must be compared with Figure 4. We can see

http://mww.bepress.com/snde/vol 8/iss2/art2



Riani: Extensions of the Forward Search to Time Series

that the last three units which enter the forward search (140, 145, 172) cause
a sudden change in the slope of the two curves. In fact the values for these
3 units have been strongly modified by OECD. For example, the value of the
production index for April 1995 (unit 172) passes from 104.1 to 92.2. Another
plot which is useful to detect areas of misspecification in the model is the so
called “entry plot” (Figure 6). Dots indicate the presence of an observation in

o | o |
© ©
'g © - 'g © -
€ €
>
£
s s
[Vl [Vl
o o
T T T T T T T T T T T T
140 150 160 170 180 190 140 150 160 170 180 190
Subset size m Subset size m

Figure 5: Italian industrial production index: monitoring of the maximum
squared standardized residual among the units belonging to the subset and
minimum squared standardized residual among the units outside the subset

the subset, so that the number of dots increases towards the right of the graph as
the subset size does. This plot is particularly useful, as we will see, when there
is a structural break or a level shift, because the set of units located just after
the structural break will tend to enter the subset together and the entry plot
will be characterized by the presence of white space for certain periods of time.
Figure 6 shows a clear strip of which space associated with the period March
1994 - December 1994 (observations 159-168). While units 163 and 165 join the
subset when m is around 155, all the others of this group enter the subset in
the final part of the search. This suggests that this subgroup of observations is
not in agreement with the rest of the model. The trajectories of the residuals
for these units together with unit 172 (the last to enter the forward search)
are shown in Figure 7. This plot shows that the trajectories of the residuals
of this group of units is very similar throughout the forward search and that
in the central part they always show a standardized residual around 2. Note
that in the final part of the search, due to the well known masking effect, they
show small residuals. Figure 8 shows the standardized one step ahead prediction
residuals in the last step of the forward search. The units which have a value
greater than 2 in absolute value are 41, 64, 140, 145 and 172. The group of units
associated with the period March 1994 - December 1994 (observations 159-168)
does not show anything particular.

11
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This example shows that going backwards it would be difficult to detect the
lack of fit for this group of units.

150
I

Units inside subset
100
L

50

\ \ \
140 160 180

Subset size m

Figure 6: Italian industrial production index: monitoring of units belonging to
the subset in final part of the forward search (entry plot)

Selected std. prediction residuals

172

T T T
140 160 180

Subset size m

Figure 7: Italian industrial production index: monitoring of selected one step
ahead standardized prediction residuals
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If we look carefully at the right hand panel of Figure 1, it is clear that the
months from March 1994 have values of the production index generally higher
than the previous ones suggesting a slight break in the series. The beginning
of this break has been marked with a downwards arrow in the right panel of
Figure 1. Once our attention has been drawn to that period of time this feature
appears clear in the plot of the data. Note that this “break” does not appear
at all in the OECD adjusted series (left hand panel of Figure 1). The entry
plot for the OECD adjusted series, here not given, is devoid of white strips.
Finally, Figure 7 shows that the trajectory of unit 172 seems to be specular
to that of units 160-169. In other words, the residual for unit 172 seems to
increase in absolute value when the residuals associated with the group of units
160-169 seem to decrease. While traditional procedures for outlier detection
simply point out that unit 172 has a high negative residual, the forward search
enables to show the connection between different units and different periods
of time. This is an example with real data of the amount of additional extra
information about the fitted model and the relationships among the units the
forward search provides.
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Figure 8: Italian industrial production index: standardized one step ahead pre-
diction residuals in the last step of the forward search

4.2 Italian industrial production index: temporary level
shift

In this section we explore how our method reacts to contaminated data. We
create a temporary level shift in the data analyzed in the last section from
observation 160 (April 1994) to 169 (January 1995). The original values are
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inflated by 20%. Figure 9, shows the monitoring of one step ahead standardized
prediction residuals from step m = 75. The contaminated units are clearly
visible at the top of the plot as the search progresses.

Std. prediction residuals

\ \ \ \ \ \
80 100 120 140 160 180

Subset size m

Figure 9: Italian industrial production index with temporary level shift: moni-
toring of the one step ahead standardized prediction residuals

The use of residuals from a robust starting point in this case is not sufficient
to detect the stretch of atypical observations. Finally, it is interesting to notice
the huge masking effect at the end of the search. When m = n = 192 the
observations with the highest residuals in absolute value are 170 and 172. The
monitoring of residuals shows that these two observations always have a residual
in agreement with the rest of the observations throughout all the search. Table 1,
which reports the units included and removed from the subset in the last 12 steps
of the forward search, points out that when m = 186, m = 187 and m = 188,
two units (instead of one) enter the subset at the same time and units 170 and
172 are removed from it. In other words, the inclusion of the cluster of outliers
forces observations 170 and 172 to leave the subset. They re-enter only in the
final two steps.

Figure 10 shows the maximum and minimum standardized one step ahead
residuals. This plot immediately reveals the real structure of the data. The
change in slope in the left-hand panel when the first outlier joins the subset
(m = 183, unit 164) and in the right panel in the step prior to the inclusion
of the first outlier (m = 182) is absolutely clear in both plots. Note that if
we had used standard deletion diagnostic procedures to detect this patch of
atypical observations, we should have started deleting the good units (170-172).
Certainly a backwards procedure would not delete 10 observations and would
fail to detect the contaminated observations. On the other hand, leaving k£ out
when k = 10 is infeasible.

http://mww.bepress.com/snde/vol 8/iss2/art2



Riani: Extensions of the Forward Search to Time Series

15

Table 1: ITtalian industrial production index with temporary level shift. Units
included and removed from subset in the last 12 steps of the forward search

Step | Units in- | Units re-
cluded moved from
subset
181 | 140
182 | 145
183 | 164
184 | 169
185 | 166
186 | 167, 168 172
187 | 160, 172 170
188 | 163, 165 172
189 | 162
190 | 161
191 172
192 | 170
Q-
Q-
% o | % 7
e ¢
So 5]
s £
: :
0 0
o o d
140 150 160 170 180 190 140 150 160 170 180 190

Subset size m

Subset size m

Figure 10: Italian industrial production index with temporary level shift: mon-
itoring of the maximum squared standardized residual among the units belong-
ing to the subset and minimum squared standardized residual among the units
outside the subset
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As we already pointed out in section 2, backwards procedures in time se-
ries try to detect outliers and/or structural breaks using estimated parameters
based on all T observations. This implies that they will be effective in detect-
ing atypical observations only if the final estimates of the hyperparameters are
not seriously biased. Figure 11 shows the monitoring of the estimates of the
parameters. The effect of the artificial temporary level shift is to pass from a
smooth trend (072] =0 and Jg > 0) to a non smooth trend. But, as expected,
the variability in the seasonal movements as expressed by ¢, (lower left panel of
Figure 11) is virtually unaffected by the presence of these atypical observations.
Finally, in the lower right hand panel we can see the monitoring of the estimate
of the parameter which has been concentrated out of the likelihood (in this case
52). Given that the forward search provides an ordering of the data according to
the fitted model, we expect this curve to be increasing as the search progresses.
This behaviour is similar to the monitoring of s? in regression (Atkinson and
Riani, 2000). This panel not only shows an increasing pattern in the estimate
of 62, but also an upward jump when the first outlier joins the subset.
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Figure 11: Ttalian industrial production index with temporary level shift: mon-
itoring of the estimates of the hyperparameters

The final plot we consider is the entry plot (Figure 12). As table 1 showed,
this group of 10 contaminated data enters the search in 8 consecutive steps.
The white space in correspondence of units 160-169 clearly suggests that they
are not in agreement with the rest of the data and that in the central part of
the search they always remain outside the subset.
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Figure 12: Italian industrial production index with temporary level shift: mon-
itoring of units belonging to the subset in the final part of the forward search
(entry plot)

4.3 American textile industrial production index

In this section we apply the suggested approach to the quarterly series of US
index of industrial production for the textile sector for the period 1947.1-1996.4.
Figure 13, which plots the series, shows that: 1) the dynamics at the beginning
of the observation period are different from the rest of the series; 2) there is a
collection of troughs and peaks of different length. The most clear one happens
in the middle of the series (observations 111-115). In order to model the series
Sichel (1993) and Proietti (2001) used a nonlinear cyclical component. In this
section, in order to compare our results with Proietti (2003), we fit a basic
structural model with linear stochastic cycle modelled as suggested in Harvey
(1989).

Figure 14 shows the monitoring of one step ahead standardized prediction
residuals. This plot first of all reveals that there is a series of units with unstable
high residuals. Some of them are associated with the initial part of the series.
Units 11 and 12 show a big downward jump when they are included in the subset
in steps m = 196 and m = 197 (see Table 2). In addition, the plot shows the
particular trajectory of three consecutive units 112-114. From step m = 198 to
m = 200 the residual from unit 114 passes from —2.70 to 2.97 as units 112 and
113 enter.

The entry plot (Figure 15) shows patches of white spaces for the initial part
of the series and strips for observations 111-115 and 140-143.

Figure 16 shows in the left panel the trajectories associated with observations
111-116 and clearly identifies the different role each observation in this stretch
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Figure 13: US industrial production textiles index: plot of the log of the series

Std. prediction residuals
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Figure 14: US industrial productlonutsgx%llferg index: monitoring of the one step

ahead standardized prediction residuals
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Table 2: US industrial production textiles index: units included and removed
from subset in the last 13 steps of the forward search

Step | Units in- | Units re-
cluded moved from
subset
188 | 14, 23 15
189 | 15, 29 23
190 | 13,23 29
191 | 29
192 | 142
193 | 114
194 | 28
195 | 141
196 | 11
197 | 12
198 | 140
199 | 112
200 | 113
I
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Figure 15: US industrial production textiles index: monitoring of units belong-
ing to the subset in final part of the forward search (entry plot)
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has. Unit 111 has a residual always close to —1 during all steps of the search.
Units 112 and 113 have a residual which increases in absolute value as the
search progresses. Unit 115 has an upward jump when m = 193 (inclusion of
unit 114). The behaviour of the trajectory associated with unit 116 is stable
and always close to zero. This plot clearly shows when the lack of fit starts
and when it finishes. On the other hand, the conclusions which come from
leaving out k observations are not clear. When we leave out two consecutive
observations the results from Proietti (2003) show that we can only detect two
atypical observations. Finally, leaving 3 out flags four consecutive outliers in
the area between observations 100 and 115. The forward search, on the other
hand, free from masking and smearing effects makes clear the inferential effect
of each unit on the results of the model and clearly identifies where the area of
lack of fit starts and when it finishes.

The trajectories associated with the other area highlighted by the entry plot
(observations 140-143) are shown in the right hand panel of Figure 16. In the
central part of the search, units 140-143 always have a residual around —2. On
the contrary, while unit 140 always shows a stable negative residual, units 141-
143 show an upward jump near the inclusion of an adjacent unit. Given that
this group of units (as shown in Figure 13) forms a trough, it is clear that their
presence in the estimation process lowers considerably the height of the fitted
curve.
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Figure 16: US industrial production textiles index: monitoring of one step ahead
standardized prediction residuals for selected units

The monitoring of the hyperparameters estimates (not shown) suggests that
such estimates are quite stable throughout the forward search. The frequency
of the estimated cycle fluctuates around 0.5 suggesting that our estimate of the
periodicity of the extracted cycle is virtually unaffected by the inclusion of the
last observations. This is an example in which the diagnostics based on param-
eters estimated using all observations can be used for outlier detection. On the
other hand, as we showed in our previous example, sometimes the estimates
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are seriously affected by outliers. In this last case we expect that only a pro-
cedure based on multiple deletion and reestimation of the parameters, or the
application of the forward search, will be able to reveal the real structure of the
data.

5 Discussion and extensions for further research

Our examples show some of the ways in which the forward search is a powerful
tool for exploring the structure of time series data. Possible extensions for
further research are the monitoring of smoothed auxiliary residuals (Koopman
and Harvey, 1992) which have been used in the past to detect structural breaks
and the results of the diagnostic tests such as heteroskedasticity or normality.

Forward plots of standardized prediction residuals, as in Figure 2, are taken
directly from the output of our Gauss program. On the screen the variety of
line types and colours, together with the ability to zoom, makes it possible to
follow the trajectories of individual units in a way which is impossible on the
printed page. Our goal is to be able to brush linked plots from the forward
search, although this is still in the future.
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