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Summary

Motivated by the requirement of controlling the number of false discoveries that arises in several
application fields, we study the behaviour of diagnostic procedures obtained from popular high-
breakdown regression estimators when no outlier is present in the data. We find that the empirical
error rates for many of the available techniques are surprisingly far from the prescribed nominal
level. Therefore, we propose a simulation-based approach to correct the liberal diagnostics and
reach reliable inferences. We provide evidence that our approach performs well in a wide range of
settings of practical interest and for a variety of robust regression techniques, thus showing general
appeal. We also evaluate the loss of power that can be expected from our corrections under different
contamination schemes and show that this loss is often not dramatic. Finally, we detail some possible
extensions that may further enhance the applicability of the method.

Key words: Forward search; FSDA toolbox; MM-estimation; outlier detection; S-estimation; test size and
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1 Introduction

Much of the recent work in robust statistics has focused on the attempt to reconcile the two
enemy brothers of high-breakdown estimation: robustness against a large fraction of masked
outliers and good statistical properties, comparable with those of classical estimators, when
the normal model for all the data holds. From the point of view of estimation, the goal of this
body of work has been the construction of estimators that can achieve both a high-breakdown
point and a high efficiency at the normal distribution (Maronna et al., 2006, Section 5.5).
A non-exhaustive list of supposedly robust and efficient techniques includes MM-estimators
(Maronna & Yohai, 2010; Van Aelst & Willems, 2011), tau-estimators (Van Aelst et al.,
2013), the reweighted version of trimmed estimators (Cizek, 2013) and the forward search
(Cerioli et al., 2014; Johansen & Nielsen, 2015).

From a diagnostic perspective, reaching satisfactory statistical properties under the normal
model also implies good control of the number of false discoveries in situations of practi-
cal interest. There are many application fields, such as high-dimensional genomics, quality
control, performance assessment and anti-fraud analysis, where such a property is highly desir-
able (Filzmoser et al., 2008; Cerioli & Farcomeni, 2011; De Battisti & Salini, 2013; Cerioli &
Perrotta, 2014). However, high-breakdown techniques tend to produce a potentially large num-
ber of spurious outliers. This tendency was first noted by Cook & Hawkins (1990), although in
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a somewhat biased context, and then confirmed in subsequent studies, even when ad hoc finite-
sample corrections are taken into account; see, for example, Cerioli et al. (2009), Fauconnier &
Haesbroeck (2009), Cerioli et al. (2013b), Lourenco & Pires (2014) and Riani et al. (2014a).
Cerioli et al. (2009), Riani et al. (2009) and Cerioli (2010) propose alternative strategies for
overcoming this shortcoming in the multivariate framework, while Maronna & Yohai (2010)
develop specific corrections for regression MM-estimates when the ratio p=n is large.

The main target of the present work is to address the diagnostic behaviour of high-breakdown
techniques at the normal model from a regression perspective, by considering a wide variety
of alternative estimators and by computing appropriate corrections when the null performance
of the corresponding diagnostic procedures is poor. In particular, we place outlier detection in
a testing scenario and develop robust regression diagnostics that are able to control empirical
test sizes at a prescribed level for all the procedures that we analyse. We also evaluate the loss
of power that can be expected from our corrections under different contamination schemes, and
we show that this loss is often not dramatic.

Let n denote the sample size and y D .y1; : : : ; yn/
0 be the vector of observations for the

response variable Y . We take as our null model for uncontaminated data the classical regression
relationship

yi D x
0
iˇ C �i ; i D 1; : : : ; n; (1.1)

where ˇ D .ˇ0; ˇ1; : : : ; ˇp�1/
0 is a p-dimensional vector of unknown coefficients, xi D

.1; xi1; : : : ; xi.p�1//
0, xij is the value of explanatory variable Xj , j D 1; : : : ; p � 1, for unit i ,

i D 1; : : : ; n, and �1; : : : ; �n are i.i.d. errors such that �i � N.0; �2/. High-breakdown regres-
sion is needed especially when X1; : : : ; Xp�1 are random variables that may contain leverage
points, because of contamination or recording errors. We thus fit model (1.1) by conditioning
on the observed vectors x1; : : : ; xn, although, for simplicity, we do not make this step explicit
in our notation. Because we are interested in the behaviour of methods under ‘good’ data struc-
tures, we mainly consider the case where the observed values of X1; : : : ; Xp�1 are a sample
from a multivariate normal distribution. We also briefly address the effect of alternative distri-
butions under the conditions described, for example, in Section 5.2 of Maronna et al. (2006).
The specific effect of contamination on the explanatory variables is analysed towards the end
of this work, when we study the diagnostic power of our corrected robust procedures.

Let

Oyi D x
0
i
Ǒ; i D 1; : : : ; n (1.2)

be the fitted version of Equation (1.1), where the estimated vector Ǒ D . Ǒ0; Ǒ1; : : : ; Ǒp�1/
0 has

been obtained by some (either robust or non-robust) methods. Our basic diagnostic quantities
are the squared scaled residuals (Atkinson & Riani, 2000; Rousseeuw & Hubert, 2011)

Os2
i D

O�2
i

O�2
; i D 1; : : : ; n; (1.3)

where O�i D yi � Oyi and O�2 is the model-based estimate of the error variance �2. We compute
each diagnostic Os2

i to test the null hypothesis

H0;i W yi � N
�
x0iˇ; �

2
�
; (1.4)

which states that observation yi comes from the postulated normal regression model. A com-
mon diagnostic practice is to repeat the test of (1.4) for each observation yi , i D 1; : : : ; n. If
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the empirical test size is close to the nominal one, say ˛, we should thus expect a proportion of
false outliers close to ˛ for any uncontaminated data set. Furthermore, when multiple testing is
an issue, as in many of the application settings mentioned earlier, we can also use the whole set
of scaled residuals (1.3) to test the hypothesis that no contamination is present in the data:

H0;All W H0;1 \ : : : \H0;n: (1.5)

The purpose of high-breakdown estimation is to ensure that fit (1.2) is unaffected if a fraction
� of observations in the sample is replaced by arbitrarily large values, either in the response
or in the explanatory variables, provided that � < 0:5. The same property also extends to the
squared scaled residuals (1.3). When n!1 and p is fixed, it is straightforward to see that

O�i � �i
p
! 0 if model (1.1) holds; (1.6)

whenever Ǒ is a consistent estimator of ˇ. Many high-breakdown regression estimators have
been shown to be consistent under general conditions; see, for example, Rousseeuw & Leroy
(1987), Davies (1990). Convergence (1.6), together with consistency of O�2, thus provides the
basis for testing (1.4) and (1.5) through the asymptotic approximation

Osi ' N.0; 1/; (1.7)

or, equivalently, through

Os2
i ' �

2
1: (1.8)

Examples of diagnostic uses of (1.7) and (1.8), for instance, in Q-Q plots of (squared) scaled
residuals and for individual outlier identification, abound in the literature; see, for example,
Chapters 4 and 5 in Maronna et al. (2006) or Hubert et al. (2008). However, the reference
N.0; 1/ or �2

1 distributions hold only in the limit and may provide poor approximations in
small or moderate samples, thus leading to increased test sizes. Additional problems may occur
because of the negative finite-sample bias typically associated with high-breakdown estimates
of �2 (Pison et al., 2002) and to the effect of inappropriate choices in the algorithm used to
compute Ǒ and O�2 (Hawkins & Olive, 2002). As a result, the exact finite-sample distribution of
diagnostics (1.3) is unknown, and it seems difficult to derive it analytically.

One goal of this paper is to investigate to what extent the most popular high-breakdown
regression methods provide accurate testing of both (1.4) and (1.5) when the squared scaled
residuals Os2

i are adopted. Because robust and efficient procedures should possess good statistical
properties at the normal model, we take the performance of classical scaled ordinary least
squares (OLS) residuals as our benchmark when all observations follow model (1.1), which
will be assumed as the data generating process for uncontaminated data. As a by-product, with
our comparisons, it is possible to assess the effect that different choices of tuning constants may
have on the empirical test sizes. We will see that the empirical performance of many robust
techniques is far from being satisfactory, when examined in our testing framework, especially
if the focus is on the intersection hypothesis H0;All. We investigate some of the reasons of this
behaviour and show that underestimation of the scale variance �2 has a major effect for all
robust regression techniques.

We then suggest a method for correcting the estimated scaled residuals (1.3), which leads to
reliable tests, with empirical sizes of the same order of magnitude as those obtained through
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OLS estimation. Our procedure is based on a combination of Monte Carlo simulation and para-
metric interpolation. It is simple to implement in many situations of practical interest, because
we provide a method to build proper tuning coefficients for 50 � n � 500 and 2 � p � 10.
Furthermore, extrapolation to values of n and p outside these ranges often yields satisfactory
approximations. Our approach is also simple enough to be extended to other robust regression
procedures that are not considered in this work. Finally, we evaluate the loss of power that can
be expected from our corrections under different contamination schemes, either in the response
or in the explanatory variables. We show that this loss is usually a reasonable price to pay in
order to ensure control of the number of false discoveries.

The structure of the paper is as follows. In Section 2, we sketch the high-breakdown regres-
sion techniques that we consider in our work. The performance of such measures when the null
model (1.1) holds is evaluated in Section 3 under different .n; p/ configurations. In the same
section, we also assess the adequacy of approximation (1.8) for the different forms of squared
residuals, and we highlight the effect of underestimating �2 for several high-breakdown regres-
sion procedures. Our proposal for obtaining reliable diagnostics is described in Section 4, where
we also check its robustness to model assumptions and outline some possible extensions. The
diagnostic power of our corrected robust procedures is assessed in Section 5 under different
contamination schemes. The paper ends with some concluding remarks in Section 6.

2 High-breakdown Regression

High-breakdown regression methods can be broadly classified into three classes, depending
on the nature of the objective function that they aim at optimising (Riani et al., 2014b). We call
these classes soft trimming, hard trimming and adaptive hard trimming. All of them have gained
much popularity over the years and are now available through a number of computer packages
written in different languages. In our study, we adopt the common and flexible computational
framework provided by the Forward Search for Data Analysis (FSDA) toolbox of Matlab
(Riani et al., 2012), available through http://www.riani.it.

Our first aim is to assess the behaviour of popular regression techniques belonging to the
three classes. We also evaluate the effect exerted by different choices of some tuning constants
required for practical implementation of the methods. In particular, we focus on breakdown
point (bdp), efficiency (eff) and, for soft trimming methods, different weight functions. We
refer to Riani et al. (2014c) for a detailed investigation of the relationships that link these
tuning constants. Table 1 provides a summary of the regression procedures that we examine
in our work, together with their acronyms. We take the classical OLS estimator as our bench-
mark under the uncontaminated normal model (1.1). The three classes of estimators are briefly
described in the following. We argue that our selection of 25 robust regression procedures
provides a wide list of possibilities that should be able to satisfy many practical needs. Never-
theless, we conjecture that our approach to the construction of robust and reliable diagnostics
could be easily extended also to cases not considered here.

2.1 Soft Trimming

The family of soft trimming estimators, leading to downweighting of observations by a func-
tion �, derives from M-estimation. For a given set of residuals O�1; : : : ; O�n, the M-estimator of
scale is defined as the solution to the equation

1

n

nX
iD1

�

�
O�i

O�

�
D K; (2.1)
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Table 1. A summary of regression procedures, for different values of bdp, eff and different weight
functions �.

Acronym Description

OLS Classical ordinary least squares estimator
Sbdp050TB S-estimator (2.2) with Tukey � function (2.3) and bdp D 0:5
Sbdp050HA S-estimator (2.2) with Hampel � function (2.4) and bdp D 0:5
Sbdp050OP S-estimator (2.2) with optimal � function (2.5) and bdp D 0:5
Sbdp050HY S-estimator (2.2) with hyperbolic tangent � function (2.6) and bdp D 0:5
Sbdp025TB S-estimator (2.2) with Tukey � function (2.3) and bdp D 0:25
Sbdp025HA S-estimator (2.2) with Hampel � function (2.4) and bdp D 0:25
Sbdp025OP S-estimator (2.2) with optimal � function (2.5) and bdp D 0:25
Sbdp025HY S-estimator (2.2) with hyperbolic tangent � function (2.6) and bdp D 0:25
MMeff085TB MM-estimator (2.7) with Tukey � function (2.3) and eff D 0:85
MMeff085HA MM-estimator (2.7) with Hampel � function (2.4) and eff D 0:85
MMeff085OP MM-estimator (2.7) with optimal � function (2.5) and eff D 0:85
MMeff085HY MM-estimator (2.7) with hyperbolic tangent � function (2.6) and eff D 0:85
MMeff090TB MM-estimator (2.7) with Tukey � function (2.3) and eff D 0:90
MMeff090HA MM-estimator (2.7) with Hampel � function (2.4) and eff D 0:90
MMeff090OP MM-estimator (2.7) with optimal � function (2.5) and eff D 0:90
MMeff090HY MM-estimator (2.7) with hyperbolic tangent � function (2.6) and eff D 0:90
MMeff095TB MM-estimator (2.7) with Tukey � function (2.3) and eff D 0:95
MMeff095HA MM-estimator (2.7) with Hampel � function (2.4) and eff D 0:95
MMeff095OP MM-estimator (2.7) with optimal � function (2.5) and eff D 0:95
MMeff095HY MM-estimator (2.7) with hyperbolic tangent � function (2.6) and eff D 0:95
LTSbdp050 LTS estimator (2.8) with bdp D 0:5
LTSbdp025 LTS estimator (2.8) with bdp D 0:25
LTSrbdp050 Reweighted LTS estimator with weights (2.10) and bdp D 0:5
LTSrbdp025 Reweighted LTS estimator with weights (2.10) and bdp D 0:25
FS Forward search regression estimator and outlier detection rule of Riani et al. (2009)

where 0 < K < sup � and � is a function that reduces the importance of observations with
large residuals. The vector Ǒ such that

Ǒ D arg min O�; (2.2)

where O� satisfies (2.1), leads to the S-estimate of ˇ and to the associated estimate of scale
(Rousseeuw & Leroy, 1987).

To achieve robustness, we must consider a � function with the following properties:

(1) It is symmetric and continuously differentiable, and �.0/ D 0.
(2) There exists a c > 0 such that � is strictly increasing on Œ0; c� and constant on Œc;1/.
(3) It is such that K=�.c/ D bdp, with 0 < bdp � 0:5.

Then the asymptotic breakdown point of the S-estimator tends to bdp when n ! 1. As c
increases, fewer observations are downweighted so that the estimate of �2 approaches that for
least squares and bdp! 0. For consistency under the normal model (1.1), we also require

K D Eˆ0;1

�
�

�
Oei

O�

��
;

where the expectation is taken over the standard normal distribution, with distribution function
denoted by ˆ0;1.
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In our study, we consider the following popular � functions:

� Tukey bisquare (TB):

�.u/ D

8<
:
u2

2 �
u4

2c2 C
u6

6c4 if juj � c

c2

6 if juj > c;
(2.3)

� Hampel (HA):

�.u/ D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂:

1
2u

2 if juj � c1

c1juj �
1
2c

2
1 if c1 < juj � c2

c1
c3juj�

1
2u

2

c3�c2
if c2 < juj � c3

c1.c2 C c3 � c1/ if juj > c3:

(2.4)

� Optimal (OP):

�.u/ D

8̂̂̂
<
ˆ̂̂:

1:3846
�
u
c

�2
if juj � 2

3c

0:5514 � 2:6917
�
u
c

�2
C 10:7668

�
u
c

�4
� 11:6640

�
u
c

�6
C

C4:0375
�
u
c

�8
if 2

3c < juj � c
1 if juj > c:

(2.5)
� Hyperbolic tangent (HY):

�.u/ D

8̂̂̂
ˆ̂̂̂̂̂
<
ˆ̂̂̂̂̂
ˆ̂̂:

1
2u

2 if juj � c1

�2 c2
c3

ln cosh

�
1
2

q
.c4�1/c2

3
c2

.c � juj/

�
C

C �
2

2 C 2 c2
c3

ln cosh

�
1
2

q
.c4�1/c2

3
c2

.c � �/

�
if � � juj � c

�2

2 C 2 c2
c3

ln cosh

�
1
2

q
.c4�1/c2

3
c2

.c � �/

�
if juj > c;

(2.6)

where 0 < � < c is such that

� D
p
Œc2.k � 1/� tanh

2
41

2

s
.k � 1/c2

3

c2
.c � �/

3
5 ;

c2 and c3 satisfy suitable conditions and c4 is related to the bound in the change of variance
curve (Hampel et al., 1981). These constants are computed iteratively, by applying Newton–
Raphson steps and numerical integration.

For each � function, the value of the breakdown point can be varied by selecting different
constants in the corresponding equation.

MM-estimation is a two-step refinement of S-estimation with the aim of achieving high effi-
ciency under model (1.1) while keeping the same breakdown point. For this purpose, in the first
stage, the breakdown point is typically set at bdp D 0:5, and an S-estimate of ˇ, say Ǒ�, is
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computed. The resulting scale estimate O�� is then used for computing the MM-estimate of the
regression parameters, which is defined as a local minimum of

1

n

nX
iD1

��
�
O�i

	� O��

�
; (2.7)

where �� is a bounded � function, possibly different from � in (2.2), and 	� is chosen to provide
high efficiency. The minimum is computed iteratively starting from Ǒ�. A value of 0.85 for
the efficiency in (2.7) is often recommended (Maronna et al., 2006, p. 126), but, of course,
alternative values are possible through the choice of 	�. For simplicity, we restrict ourselves to
the case where the functional form of �� in (2.7) is the same as that of � in (2.2).

2.2 Hard Trimming

The most popular trimming method for regression, on which we focus, is least trimmed
squares (LTS). In this method, the amount of trimming is determined by the choice of the
trimming parameter h, b.n C p C 1/=2c � h � n, where b�c is the floor function, which is
specified in advance. The LTS estimate is intended to minimise the sum of squares of the h
smallest residuals:

Ǒ D arg min
hX
iD1

O�2
Œi�; (2.8)

where O�Œ1�; : : : ; O�Œn� are the ordered residuals from fit (1.2). The corresponding estimate of �2 is

O�2 D k.h; n; p/
1

h

hX
iD1

O�2
Œi�; (2.9)

where k.h; n; p/ is a correction factor, depending on h, n and p, which ensures consistency
under the normal model (1.1) and also provides a finite-sample bias adjustment (Croux &
Haesbroeck, 1999; Pison et al., 2002).

The most resistant choice against contamination is h D b.n C p C 1/=2c, which yields
asymptotically bdp D 0:5 (Rousseeuw & Leroy, 1987). An alternative recommendation, which
is often seen as a good compromise between robustness and efficiency, corresponds to choosing
bdp D 0:25 (Hubert et al., 2008, p. 95).

2.3 Adaptive Hard Trimming

The purpose of adaptive trimming methods is to select the amount of trimming h from the
data. This goal requires more than one step.

In the reweighted version of the LTS estimator (LTSr), we first set h D b.n C p C 1/=2c,
for which preliminary and very robust estimates of ˇ and � , say Ǒ� and O��, are computed
through (2.8) and (2.9). In the second stage, we obtain the final parameter estimates by applying
a weighted OLS approach, with weights defined as follows:

wi D

8̂<
:̂

1 if
�
O��
i

O��

	2
� �2

1;0:975

0 if
�
O��
i

O��

	2
> �2

1;0:975;

(2.10)
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where O��i D yi � Oy
�
i , Oy�i D x

0
i
Ǒ� and �2

1;� denotes the 
 -th quantile of the �2
1 distribution. This

weighting scheme clearly relies on the adequacy of the asymptotic approximation (1.8), which
is commonly used even when the error distribution is not normal.

A fully efficient iterative scheme that is not restricted to only two steps is provided by the
forward search (FS). In this approach, data analysis starts from a very robust fit to a few, care-
fully selected observations found, for example, by LTS with h D b.nCpC1/=2c. In the initial
step of the FS, we take the m0 observations with the smallest squared residuals from the robust
fit. Typically, m0 D p C 1 or slightly larger. The number of observations used in fitting then
increases by including those with the smallest squared residuals at the previous step, until all
units are included. At stepmC1 of the FS, the parameter estimates are again computed through
a weighted OLS approach but now with weights

wi .mC 1/ D

´
1 if O�i .m/2 � O�ŒmC1�.m/

2

0 otherwise;

where O�i .m/ D yi � Oy.m/i , O�Œ1�.m/2; : : : ; O�Œn�.m/2 are the ordered squared residuals, Oyi .m/ D
x0i
Ǒ.m/ and Ǒ.m/ is the estimate of ˇ computed at step m for which the matrix of regressors is

X.m/, for m D m0; : : : ; n � 1.
The FS provides a set of n � m0 C 1 residuals for each observation, starting from the ini-

tial LTS-based fit and ending with the classical OLS fit when m D n. Exploration of this set
is very useful for diagnostic purposes (Riani et al., 2014a; Riani et al., 2014b) but requires a
summary for precise outlier identification. While for the other robust procedures, it is possible
to sequentially test all the individual outlier hypotheses (1.4) by means of the squared scaled
residuals Os2

i , i D 1; : : : ; n, the sequence of steps implied by the FS would make such tests cum-
bersome. Therefore, we follow the rules established by Riani et al. (2009) that first focus on the
simultaneous hypothesis (1.5) of no outliers and then move to individual outlier identification.

More precisely, let S�.m/ be the subset of size m found by FS. Ordinary residuals O�i .m/
can be calculated for all observations including those not in S�.m/. To test for outliers, we
use instead deletion residuals that are calculated for the n � m observations not in S�.m/.
These residuals, which form the maximum likelihood tests for the outlyingness of individual
observations, are

ri .m/ D
yi � x

T
i
Ǒ.m/p

O�2.m/¹1C hi .m/º
D

O�i .m/p
O�2.m/¹1C hi .m/º

; (2.11)

where the leverage hi .m/ D xTi ¹X.m/
TX.m/º�1xi . Let the observation nearest to those

forming S�.m/ be imin, where

imin D arg min
i…S�.m/

jri .m/j:

To test whether observation imin is an outlier, we use the absolute value of the minimum
deletion residual

rmin.m/ D
eimin.m/p

s2.m/¹1C himin.m/º
; (2.12)

as a test statistic. If the absolute value of (2.12) is too large, the observation imin is considered
to be an outlier, as well as all other observations not in S�.m/. The test statistic (2.12) is the
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.mC 1/st ordered value of the absolute deletion residuals. We can therefore use distributional
results to obtain pointwise envelopes as the subset size increases (Riani et al., 2009) based on
the scaled F distribution. If we had an unbiased estimator of �2, the envelopes would be given
by ymC1;nI� for m D m0; : : : ; n � 1, the quantile of order 
 of the distribution of the absolute
value of (2.12) at stepm. However, the estimator s2.m�/ is based on the centralm observations
from a normal sample—strictly the m observations with smallest squared residuals based on
the parameter estimates from S�.m � 1/. The variance of the truncated normal distribution
containing the central m=n portion of the full distribution is

�2
T .m/ D 1 �

2n

m
ˆ�1

�
nCm

2n

�
�

²
ˆ�1

�
nCm

2n

�³
; (2.13)

where �.:/ and ˆ.:/ are, respectively, the standard normal density and c.d.f. (see, for example,
Johnson et al., 1994, pp. 156–162). Because the outlier tests we are monitoring are divided by
an estimate of �2 that is too small, we need to scale up the values of the order statistics to obtain
the envelopes

y�mC1;nI� D ymC1;nI�=�T .m/:

To be specific, in the case of the 99% envelope, 
 D 0:99 corresponds to a nominal pointwise
size ˛ D 1 � 
 , which is equal to 1%. We expect, for the particular step m that is considered,
to find exceedances of the quantile in a fraction 1% of the samples under the null normal dis-
tribution. We however require a samplewise probability of 1% of the false detection of outliers,
that is, over all values of m considered in the search. In order to have a test designed to have a
simultaneous size of 1%, we can proceed as follows:

(1) Preliminary detection of signals, by looking at the diagnostic quantities (2.11). A prelimi-
nary signal is detected if (2.12) exceeds an appropriate distributional threshold for at least
three subsequent values of m. Call this step m�.

(2) In the second part, we superimpose envelopes for values of n from this point until the first
time we introduce an observation we recognise as an outlier. More precisely, in this stage,
we look at the actual squared deletion residuals of the units that enter in the fitting subset
after stepm� � 1 and compare them with thresholds derived from the reduced sample sizes
n� D m� � 1; m�; m� C 1; : : :, until a stopping rule is reached. The goal of this stage is to
take into account the increased variability of estimates in a ‘clean’ sample of size n� < n.

It is also important to emphasise that the inferential rules adopted in the FS do not involve the
asymptotic distribution of the squared scaled residuals, as in (1.8), but rely on a more accurate
F1;n�p approximation for the deletion residuals (2.11) in finite samples.

3 False Signals and Empirical Size: How Many Outliers from High-breakdown
Regression?

3.1 Simulation Framework

We first analyse the empirical performance, under model (1.1), of all the procedures reported
in Table 1, taking the OLS method as our benchmark. The simulation study is built using
different sample sizes n and different numbers of parameters p. In particular, we consider the
grid defined by

n D ¹50; 60; 70; 80; 90; 100; 150; 200; 250; 300; 400; 500º and 2 � p � 10: (3.1)
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For each pair of n and p, we simulate K D 10 000 replicates from model (1.1), where y is
a sample from a standard normal distribution but X1; : : : ; Xp�1 are fixed for each simulation.
The results that we present are based onX1; : : : ; Xp�1 generated from the standard multivariate
normal distribution. We have computed the same tests by generating the explanatory vari-
ables from the Student’s t and the chi-square distributions, without noticeable differences. We
give some evidence of this distributional robustness later in Section 4.3. Results (not reported)
for explanatory variables with a richer correlation structure are broadly consistent with our
findings; hence, for ease of presentation, we consider only the simplest case where the Xj ’s are
mutually independent.

For each simulation and each model described in Table 1, we calculate the squared scaled
residuals Os2

i defined in (1.3). We use these residuals to test the n individual hypotheses (1.4) and
the simultaneous null (1.5).

3.2 Estimation of Empirical Sizes

Under model (1.1), our asymptotic threshold to test the n individual hypotheses (1.4) is given
by �2

1;0:99 for all the procedures listed in Table 1. For the simultaneous test of (1.5), we use
instead the Bonferroni threshold �2

1;1�.1�0:99=n/.
Figures 1 and 2 show the empirical (individual and simultaneous) sizes for all procedures in

a small sample case, that is, when n D 50, for two different numbers of parameters, p D 2 and
p D 10. Figures 3 and 4 provide the same output when the sample size is larger, n D 200. The
horizontal line represents the nominal (either individual or simultaneous) size of 1%.
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Figure 1. Empirical size of individual outlier tests for the robust procedures given in Table 1 when n D 50, p D 2 (top)
and p D 10 (bottom).
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Figure 2. Empirical size of simultaneous outlier tests for the robust procedures given in Table 1 when n D 50, p D 2 (top)
and p D 10 (bottom).
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Figure 3. Empirical size of individual outlier tests for the robust procedures given in Table 1 when n D 200, p D 2 (top)
and p D 10 (bottom).
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Figure 4. Empirical size of simultaneous outlier tests for the robust procedures given in Table 1 when n D 200, p D 2 (top)
and p D 10 (bottom).

The black dot, in the bottom left part shown in Figures 1 to 4, represents the empirical size
for OLS. Hence, the OLS diagnostics have empirical size close to the nominal level (under
both the individual and the simultaneous tests) even for moderate and small sample sizes. The
general conclusion about robust methods is that adaptive hard trimming approaches (LTSr and
FS) are systematically much better than the others. In particular, the FS is the only method
that provides results very close to those of OLS in any simulation setting. One motivation that
justifies the improved performance of the FS over LTSr is the use of more accurate distributions
in finite samples.

As expected, the behaviour of many robust diagnostic techniques is worse when testing (1.5).
For simultaneous testing, an extreme percentile of the distribution is needed, and hence, the
approximation to the distribution of Os2

i must be good in the tail. When n is small and p is large
(e.g. n D 50 and p D 10), the empirical sizes of the test of (1.5) are close to 1 for all S-
estimators with bdp D 0:5 and for all MM-estimators that are based on them, regardless of the
efficiency level. Also, LTS with bdp D 0:5 leads to an estimated size very close to 1, even if
the finite-sample bias adjustment of Pison et al. (2002) is applied to it; see Equation (2.9). One
reason is that this simulation-based adjustment aims at correcting the bias in the estimate of
�2 under model (1.1), but it is not effective in the tail of the distribution of the squared scaled
residuals. When testing the individual hypotheses (1.4) and when n increases, empirical sizes
provided by MM-estimators are intermediate between those of S-estimators with bdp D 0:5
and bdp D 0:25. This behaviour, combined with bad performance under (1.5), shows that
it is difficult for MM-estimators to recover the efficiency that is lost at the first step, where
S-estimators with bdp D 0:5 are computed.

The effect of bdp is evident both on S and on LTS estimators. This confirms the popular
indication that bdp D 0:5 should be chosen only when a massive contamination is expected
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(Hubert et al., 2008, p. 95). When the ratio p=n is small and/or simultaneous testing is con-
sidered, both hard and soft trimming techniques should be run with bdp D 0:25 in order to
achieve reasonable performance under the normal model. The choice of the � function does
not seem to have a noticeable effect on test sizes. Empirical sizes are generally larger for the
optimal � function (2.5) and smaller for the hyperbolic tangent (2.6). Moreover, the differences
are less evident when n increases and p decreases, and, in general, less important than those
observed for different values of bdp.

3.3 Distributional Issues

Another way to evaluate the adequacy of the squared scaled residuals (1.3) under a normal
regression model is to assess the goodness-of-fit of their empirical distribution to the reference
asymptotic �2

1 distribution. This alternative examination focuses on all estimated residuals and
not only on the largest ones. Therefore, it can provide useful information for more general
diagnostic checking than outlier detection, for example, for exploratory analysis through Q-Q
plots. If the correct distribution of the squared scaled residuals is �2

1, as implied by asymptotic
theory for OLS and robust regression, then p-values will be uniformly distributed. Hence, our
null distributional hypothesis is

H0;GOF W
®
P
�
�2

1 > s
2
1

�
: : : P

�
�2

1 > s
2
n

�¯
is an i.i.d. sample from U.0; 1/; (3.2)

where, s2
1 ; : : : ; s

2
n denote the observed values of Os2

1 ; : : : ; Os
2
n.

We test the uniformity hypothesis (3.2) through the Pearson chi-square statistic. We prefer
this test because it is less sensitive to the effect of parameter estimation than the Kolmogorov–
Smirnov statistic. See Cerioli et al. (2013a) for details in the multivariate setting. Indeed,
our goodness-of-fit analysis is performed on the estimated residuals from fit (1.2), and the
finite-sample correlation induced by estimation can lead to remarkable conservativeness in the
Kolmogorov–Smirnov test of (3.2). For the Pearson chi-square, the number of classes r , used
to build the contingency table, is guided by the standard Mann–Wald recommendation, that is,
r D d2n2=5e, with d�e denoting the ceiling function. Other sensible choices of r give results
broadly consistent with our findings discussed in the following. We have also performed the
same kind of distributional test using F1;n�p as the reference distribution, instead of �2

1. This
small sample approximation accommodates the effect of estimation of the variance �2, which
makes the tails of the distribution of scaled residuals heavier than Gaussian. However, we have
not found remarkable differences in our goodness-of-fit findings. We fix a nominal level of 1%
in all our tests of (3.2) and report results in percentages (with entries smaller than 2% in bold)
to improve the overall readability.

We first report our results for the case of a small sample size in Table 2, where n D 100,
and all values of p in our simulation grid (3.1) are studied. Results from Table 2 confirm the
main findings of Section 3.2. For such a sample size, the procedures for which bdp D 0:25
perform reasonably well, even for comparatively high values of p, with some minor exceptions
for the LTS. For robust methods with bdp D 0:5, the uniformity hypothesis is rejected far
too often, except for FS, and for some values of p in the reweighted LTS. Again, the squared
scaled residuals from this adaptive trimming technique are the only high-breakdown version
of (1.3) to have distributional features comparable with those of their OLS counterpart. Notice
that performance for many MM-estimators quickly degenerates when p grows, showing that
their asymptotic convergence is slow, regardless of the choice of the � function. Performance
generally improves as n becomes larger, as shown in Table 3 for n D 200. Nevertheless, it is
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Table 2. Empirical size (in percentage) of the Pearson test for testing the hypothesis of uniformity of p-values
(3.2) for a nominal level of 1%.

methods (n D 100) p D 2 p D 3 p D 4 p D 5 p D 6 p D 7 p D 8 p D 9 p D 10

OLS 0.69 0.6 0.61 0.69 0.66 0.68 0.86 0.82 0.84
Sbdp050TB 2.32 5.14 10.96 20.77 36.69 56 74.76 88.36 96.17
Sbdp050HA 2.13 4.67 10.35 19.96 35.04 55.15 73.34 88.22 95.87
Sbdp050OP 3.25 7.59 15.95 29.72 49.39 69.97 85.27 94.62 98.66
Sbdp050HY 2.06 4.52 9.76 21.87 39.53 61.12 80.24 92.88 98.19
Sbdp025TB 0.68 0.55 0.58 0.62 0.75 0.85 0.84 0.92 1.09
Sbdp025HA 0.75 0.63 0.58 0.62 0.86 1.02 1.08 1.08 1.32
Sbdp025OP 0.59 0.64 0.66 0.59 0.78 0.8 0.85 0.53 0.91
Sbdp025HY 0.65 0.46 0.6 0.74 0.98 0.92 0.78 0.9 1.14
MMeff085TB 1.36 1.47 1.72 2.16 3.32 4.79 7.41 10.12 15.93
MMeff085HA 1.09 1.33 1.68 2.23 3.37 4.82 6.97 10.61 16.53
MMeff085OP 1.24 1.53 2.23 2.45 3.26 4.55 6.73 10.15 15.96
MMeff085HY 0.92 1.08 1.32 1.44 2.14 2.95 4.15 5.49 8.4
MMeff090TB 1.31 1.45 1.71 2.1 2.81 4.04 6.22 9.54 14.98
MMeff090HA 1.24 1.36 1.5 1.91 2.94 3.77 5.85 8.96 13.84
MMeff090OP 1.19 1.63 2.22 2.73 3.87 5.95 9.1 14.25 23.09
MMeff090HY 0.99 0.92 1.1 1.27 1.69 2.24 3.43 4.37 6.47
MMeff095TB 1.31 1.45 1.71 2.1 2.81 4.04 6.22 9.54 14.98
MMeff095HA 1.24 1.36 1.5 1.91 2.94 3.77 5.85 8.96 13.84
MMeff095OP 1.19 1.63 2.22 2.73 3.87 5.95 9.1 14.25 23.09
MMeff095HY 0.99 0.92 1.1 1.27 1.69 2.24 3.43 4.37 6.47
LTSbdp050 10.5 21.64 34.41 44.61 54.66 63.27 70.81 78.3 85.62
LTSbdp025 1.14 1.51 2.17 3.1 4.49 6.02 9.26 13.46 19.67
LTSrbdp050 0.56 0.76 0.86 1.02 1.35 1.64 2.14 2.63 3.09
LTSrbdp025 0.73 0.63 0.64 0.71 0.88 0.86 0.79 0.92 0.97
FS 0.67 0.61 0.61 0.73 0.76 0.82 1.11 1.24 1.58

The sample size is n D 100, and all values of p in grid (3.1) are considered. Boldface entries are for percentages
smaller than 2%.

remarkable that for all the values of p in the grid, the estimated size of FS becomes virtually
indistinguishable from that of OLS, which represents the benchmark without contamination.

We also provide a graphical diagnostic to check the normality of S and MM residuals. We
limit our attention to the case of p D 10 and n D 100, but we found similar behaviour for other
choices of p=n. Our findings are displayed in Figure 5 where, from top to bottom, respectively,
we consider MM- and S-estimators. Grey solid lines provide 95% envelopes from the Gaussian
distribution, which have to be contrasted with the empirical 95% confidence bands of robust
methods (MM and S), which have black dashed lines. In all panels, the ‘central line’ for either
the normal distribution or the robust empirical method corresponds to the median. The left-hand
panels of Figure 5 have the ordered index position in the abscissa, whereas the right-hand panels
have the empirical quantiles. It is hard to understand what is the true underlying distribution of
robust MM and S residuals, but it is clear that such residuals are far from Gaussian.

3.4 The Effect of the Scale Estimate

It is known that the main inferential problem with hard trimming procedures is the fact that
O�2 underestimates the true residual variance �2 when n is small or moderate, even if consis-
tency correction is applied to it. For instance, this negative bias leads Pison et al. (2002) to
include a simulation-based finite-sample correction in their LTS estimate of Equation (2.9).
García- Escudero & Gordaliza (2005) and García-Escudero & Gordaliza (2006) reach similar
conclusions in the multivariate setting. In what follows, we further investigate the underesti-
mation effect for hard trimming estimates of �2, and we extend the results to the case of soft
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Table 3. Empirical sizes (in percentage) as in Table 2 but now for n D 200.

Methods (n D 200) p D 2 p D 3 p D 4 p D 5 p D 6 p D 7 p D 8 p D 9 p D 10

OLS 0.76 0.8 0.69 0.74 0.78 0.77 0.81 0.71 0.67
Sbdp050TB 1.72 2.88 4.69 8.19 12.95 20.87 31.73 45.37 60.57
Sbdp050HA 1.77 2.9 4.65 7.57 12.22 19.97 30.71 43.9 58.81
Sbdp050OP 2.45 3.94 7.67 13.11 21.29 33.85 48.82 64.76 77.76
Sbdp050HY 1.4 2.63 4.45 8.41 14.1 24.28 38.22 53.36 70.39
Sbdp025TB 0.74 0.75 0.72 0.77 0.68 0.56 0.78 0.96 1.12
Sbdp025HA 0.8 0.75 0.72 0.73 0.97 0.75 0.82 1.02 1.17
Sbdp025OP 0.61 0.68 0.56 0.77 0.77 0.71 0.87 0.91 1
Sbdp025HY 0.67 0.7 0.59 0.83 0.86 0.81 0.82 0.9 1.06
MMeff085TB 1.32 1.51 1.45 1.75 1.99 2.52 3.39 4.02 5.25
MMeff085HA 1.35 1.48 1.61 1.76 1.73 2.31 3.21 3.49 4.66
MMeff085OP 1.47 1.32 1.5 2.02 1.93 2.19 3.46 3.73 4.51
MMeff085HY 1.09 1.27 1.12 1.39 1.2 1.54 2.11 2.48 2.97
MMeff090TB 1.22 1.35 1.41 1.63 1.94 2.18 2.82 3.29 3.72
MMeff090HA 1.29 1.33 1.44 1.55 1.73 2.01 2.68 3.33 3.87
MMeff090OP 1.44 1.48 1.6 1.94 2.06 2.4 3.42 4.53 5.61
MMeff090HY 0.92 1.18 1.08 1.16 1.34 1.46 1.82 2.02 2.47
MMeff095TB 1.22 1.35 1.41 1.63 1.94 2.18 2.82 3.29 3.72
MMeff095HA 1.29 1.33 1.44 1.55 1.73 2.01 2.68 3.33 3.87
MMeff095OP 1.44 1.48 1.6 1.94 2.06 2.4 3.42 4.53 5.61
MMeff095HY 0.92 1.18 1.08 1.16 1.34 1.46 1.82 2.02 2.47
LTSbdp050 7.52 13.02 18.2 22.75 26.63 29.44 34.04 40.12 44.78
LTSbdp025 1.1 1.32 1.68 1.96 2.54 3.17 4.25 5.27 8.04
LTSrbdp050 0.62 0.79 0.84 0.88 0.63 0.67 0.87 1.1 0.97
LTSrbdp025 0.62 0.65 0.65 0.72 0.72 0.7 0.75 0.86 0.83
FS 0.75 0.81 0.73 0.74 0.78 0.81 0.9 0.82 0.79
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Figure 5. Left panels: empirical (dashed lines) and theoretical (solid lines) quantiles versus ordered index. Right pan-
els: empirical quantiles versus theoretical quantiles (Q-Q plot). MM-estimator MMeff085HA and (top) and S-estimator
Sbdp050TB (bottom) for n D 100 and p D 10.
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Figure 6. Monte Carlo estimate of the error variance � 2. The true value is � D 1 (light black straight solid line in all
panels). The top left panel is for the estimator Sbdp050OP, whereas the top right is for the estimator MMeff090OP. Both top
panels refer to the case p D 2. The bottom left and bottom right panels refer to the same estimators but for p D 10.

trimming regression methods, for which we quantify the extent of such a negative bias in the
estimation of �2.

To assess the extent of this bias, we consider the two estimators Sbdp050OP and
MMeff090OP. Figure 6 shows Monte Carlo summaries of our simulations for the two estima-
tors: Sbdp050OP and MMeff090OP. For all panels, the dashed lines represent the 99% and
1% quantiles (from top to bottom, respectively) of the computed estimates of �2 with a robust
method. The thin black horizontal straight line is the true value of �2 D 1 from which we
simulated our data, which represents the benchmark. The heavy solid lines are for the sample
average (black) and sample median (grey). The top panels of Figure 6 are for p D 2 and the
bottom panels for p D 10. The convergence to the true value is quite slow, with higher bias
when p grows. Other estimators (not shown here) display minor differences, but they all share
the same common background. It is interesting to remark that the underestimation bias is still
present in the LTS estimate of �2 even if the small sample correction factors of Pison et al.
(2002) is applied.

Test sizes are far from the nominal level mostly because of a biased estimate of �2. Using
our correction factors (to be numerically introduced and theoretically motivated in Section 4)
can mitigate the effect of such bias. Figure 7 shows the relationship between our correction
factors and the underestimation effect on �2 (for ease of comparison, we show the graphical
results for Sbdp050OP and MMeff090OP, but similar patterns are displayed by other robust
methods). The grey lines are all referred to the sample average of O�2 from residuals of our
simulations. The values of these averages are essentially equivalent for the robust estimators
Sbdp050OP and MMeff090OP. In the top left panel of Figure 7, we have the graphical results
for the individual correction factors and p D 2, with the solid black line associated with the
MMeff090OP estimator and the dashed black line to the Sbdp050OP estimator. In the top right
panel of Figure 7, it is displayed the effect when the simultaneous test is considered. The bot-
tom panels of Figure 7 are equivalent to the top panels but now with p D 10. The graphical

International Statistical Review (2015), 0, 0, 1–29
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



Reliable Robust Regression Diagnostics 17

n

MMeff090OP
Sbdp050OP
Monte Carlo
p = 2 (individual)

MMeff090OP
Sbdp050OP
Monte Carlo
p = 2 (simultaneous)

MMeff090OP
Sbdp050OP
Monte Carlo
p = 10 (individual)

100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n
100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n
100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n
100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MMeff090OP
Sbdp050OP
Monte Carlo
p = 10 (simultaneous)

Figure 7. Relationship between our correction factors (to be introduced in Section 4) and the underestimation effect on � 2.
Top left panel shows the results for the Sbdp050OP and MMeff090OP estimators for the individual tests and p D 2 (black
dashed and solid lines, respectively). The grey line is the average from our simulations. Top right panel is equivalent to the
top left but for simultaneous tests. The bottom panels display the same results for p D 10.

results from Figure 7 are suggesting that the bias in estimating �2 is responsible for the bad
performance, in terms of low size of the test, for many robust methods. It is probably the main
source for such bad performance, but clearly, it is not the only factor.

A major consequence of underestimating the residual scale is that the number of outliers
flagged in each sample is typically far from the one predicted from the binomial distribution,
which is the distribution for the number of outliers under the normal model (1.1) with �2 known.
On the contrary, we see that the number of outliers detected from the FS is much closer to its
theoretical counterpart, thanks to the reduced bias in the resulting estimate of �2 and to the use
of more accurate thresholds based on the F1;n�p distribution, like in the case of OLS residuals.

4 Reliable Robust Diagnostics

4.1 Estimate of the Appropriate Correction Factors

It is clear from the results reported in Section 3 that the squared scaled residuals (1.3)
obtained from the vast majority of high-breakdown techniques need to be adjusted in order to
keep false outlier detections under control, with empirical rates close to the nominal ones. Our
proposal is to scale each value Os2

i , i D 1; : : : ; n, by a fixed method-dependent constant, such
that the empirical estimated size of each outlier identification rule becomes close to the nominal
1%. For this purpose, define 'i;� to be the non-random value for which

P
�
'i;� Os

2
i � �

2
1;�

�
D 


when model (1.1) holds. Note that, asymptotically, the scaling factors 'i;� are the same for
all observations and converge to 1 for any 
 2 .0; 1/, because of convergence in probability

International Statistical Review (2015), 0, 0, 1–29
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



18 S. SALINI ET AL.

reported in (1.6). Because the chi-squared threshold derived from (1.8) is also asymptotic, we
base our corrections on a similar assumption of identical distribution for the squared scaled
residuals. We thus suppose that there exists a value '� , possibly depending on n and p, and
converging to 1, as n!1, with p fixed, for which, at least approximately,

P
�
'� Os

2
i � �

2
1;�

�
D 
 i D 1; : : : ; n: (4.1)

Our aim is to find reliable estimates of '� for each high-breakdown version of Os2
i and especially

for those that have unsatisfactory performance in the simulation study of Section 3. To test
the individual hypotheses (1.4), we fix 
 D 0:99, while 
 D 1 � .1 � 0:99/=n under the
simultaneous null (1.5).

It is useful to rewrite (4.1) in terms of the quantiles of the true distribution of the squared
scaled residuals Os2

i . Let &2
� be the value such that, for given n and p,

P
�
Os2
i � &

2
�

�
D 
;

neglecting again the possible finite-sample effect of individual distributional features. Because
Os2
i is a continuous random variable under non-degenerate conditions, an equivalent definition

of '� is

'� D
�2

1;�

&2
�

: (4.2)

Our proposal is to obtain, for each robust technique and for the required nominal level implied
by 
 , a Monte Carlo estimate of &2

� , which will be plugged into (4.2). Numerically, such coef-
ficients could be computed only for a grid of values of n and p, but in Sections 4.2 and 4.3,
we show how to extend the procedure for general use. Our approach differs from that of Pison
et al. (2002), who aim at correcting the robust LTS estimate of �2 under model (1.1). Being
focused on the tail of the empirical distribution of the squared scaled residuals, rather than on
their mean, our technique is specifically devised for the purpose of outlier detection and may
be expected to improve considerably over the inadequate results for LTSbdp050 of Table 1. We
are not aware of the availability of related corrections for diagnostic techniques based on soft
trimming methods.

Let K denote the number of Monte Carlo simulations performed for each pair .n; p/.
Furthermore, let

Os2
Œ1�.k/; : : : ; Os

2
Œn�.k/

be the ordered values of the squared scaled residuals (1.3) computed from the fit at replicate k,
for k D 1; : : : ; K. Define

l D b.nC 1/
c; (4.3)

where b�c denotes the integer part. If we take

O&2
� .k/ D Os

2
Œl�.k/;

it is straightforward to see that direct Monte Carlo estimation of &2
� by averaging theK estimates

O&2
� .k/ is, in general, not feasible. From definition (4.3), we always have l D n when testing

(1.5) at the nominal level of 1%, while n > 100 is required to obtain l < n when testing (1.4)
at the same nominal level.
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Therefore, we follow the approach of Cerioli et al. (2009), and we resort to a different
Monte Carlo approximation of &2

� based on pooling all the n� D n � K estimates Os2
Œi�
.k/ in a

single sample

OS D
�
Os2
Œ1�.1/; : : : ; Os

2
Œ1�.K/; Os

2
Œ2�.1/; : : : ; Os

2
Œ2�.K/; : : : ; Os

2
Œn�.1/; : : : ; Os

2
Œn�.K/

	0
:

Motivated by convergence results (here as n� ! 1) for quantiles, even in the case of non-
independent observations (see, e.g. Korosok, 2008), we take the 
 -th quantile of the pooled
sample OS as our estimate of &2

� , that is,

O&2
� D

OSŒl�; (4.4)

where OSŒl� is the l-th ordered value in OS and l is defined as in (4.3), with n replaced by n�.
Correspondingly,

O'� D
�2

1;�

O&2
�

: (4.5)

We compute the estimated thresholds (4.4) and the corresponding scaling factors (4.5) for
all the high-breakdown regression techniques that have shown poor performance in Section 3,
based on the same set of simulations that are displayed in Figures 1–4. The behaviour of the
resulting outlier detection rules is investigated in detail in Sections 4.2 and 4.3. But first, we
check how these corrections are affected by n, p and by the choice of eff, bdp and the �
function. In general, we see that the estimated thresholds increase if the number of parame-
ters p grows and decrease if the sample dimension n grows, for both the individual and the
simultaneous testing frameworks. For instance, we plot in Figure 8 the value of

�
O'�
��1

for
the MM-estimator with Tukey � function (2.3). The three pairs of curves refer, respectively,
to p D 2, p D 6 and p D 10. The black curves (blue in the online colour figure) refer to
eff D 0:85 and the grey (red in the online colour figure) refer to eff D 0:85. It is clear that
the value of eff has a negligible effect, when compared with that of p. Similarly, in Figure 9,
we present the value of

�
O'�
��1

for the S-estimator with bdp D 0:5 and for the same three
values of p as before. The black curves (blue in the online colour figure) refer to the hyper-
bolic tangent � function (2.6) and the grey (red in the online colour figure) refer to the optimal
� function (2.5). These are the � functions that produce the largest difference in the estimated
size of outlier tests, as was shown in Section 3.2. Again, the effect connected with p is much
greater than that related to the choice of the � function. Finally, we inspect the advantages of
adaptive trimming in Figure 10, where we plot the value of

�
O'�
��1

for the LTS estimator (2.8)
(black curves) and for its reweighted version (grey curves), with bdp D 0:5. In this case, it is
seen that the effect of reweighting is prominent for all the values of p, which further supports
the adoption of an adaptive trimming approach. By comparing the plots for the two testing sce-
narios, it can also be noted that the relationship between O'� and 
 is not linear. As expected, the
estimated thresholds converge to the theoretical chi-squared quantile for each procedure, that
is,
�
O'�
��1

converges to 1 (black horizontal line in Figures 8–10).

4.2 Null Performance of the Corrected Robust Diagnostics

For general usability of the method, our scaling factors (4.5) must be easily available for
any n in the range for which standard robust diagnostic procedures behave unacceptably. Our
proposal is to adopt a simple but flexible, interpolation scheme.
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Figure 8. Plot of
�
O'�
��1

for the MM-estimator with the Tukey � function (2.3) for different values of p and efficiency. Black:
eff D 0:85; grey: eff D 0:95. Left panel: individual size; right panel, simultaneous size.
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Figure 9. Plot of
�
O'�
��1

for the S-estimator with bdp D 0:5 for different values of p and � functions. Black: hyperbolic
tangent; Grey: optimal.
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Figure 10. Plot of
�
O'�
��1

for the LTS estimator (black curves) and for its reweighted version (grey curves) with bdp D 0:5,
for different values of p.

First, define

O'�;n;p WD O'� ;

in order to make explicit the dependence of O'� on both n and p. We then fix p � 10 and
consider a generic sample size, say On, among those not included in our simulation grid (3.1).
Therefore, 50 < On < 500 and On ¤ n. The interpolated scaling factor for On is obtained as

O'�; On;p D O'�;nU ;p C
O'�;nU ;p � O'�;nL;p

nU � nL
. On � nL/; (4.6)
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where nU is the smallest value of n in the grid such that On < nU and nL is the largest value
of n in the grid such that On > nL. We emphasise that our simple linear approximation (4.6)
is motivated by the monotone behaviour exhibited by all estimated factors O'�;n;p as a function
of n. Because the available grid of sample sizes (3.1) is rather dense, it seems unnecessary to
adopt more complicated interpolation functions. If On < 50, we may set

O'�; On;p D O'�;50;p;

although we discourage the blind use of robust regression diagnostics (even after our
correction) when the sample is very sparse, for example, when n=p < 5. For very small sample
sizes, accurate distributional results are needed (Cerioli, 2010), while appropriate regularisa-
tion is required (Alfons et al., 2013) when p approaches, or is even larger than, n. As seen in
Figures 8–10, the empirical thresholds approach the theoretical ones, and the ratio (4.2)
becomes close to 1 for all the techniques. Hence, for n > 500, the theoretical chi-squared
threshold can be used.

The behaviour of our estimated corrections factors for testing both (1.4) and (1.5), when the
normal regression model holds, is investigated through a new simulation study, based again on
10 000 independent replicates for each pair of n (or On) and p. Table 4 reports the empirical sizes
obtained for four pairs .n; p/ belonging to the grid (3.1), while Table 5 refers to two values of
On (namely, On D 74 and On D 170) not in the grid. We focus on only three procedures, those
with the worst performance in Section 3.2. Our corrections provide coefficients, which are very
effective for controlling the proportion of false outliers, for the prescribed nominal level of 1%,
even when n (or On) is small and p is large.

4.3 Robustness to Assumptions on Explanatory Variables and Extensions

We conclude our investigation of the behaviour of the proposed diagnostic procedure under
the uncontaminated regression model (1.1) by considering some natural extensions and by
checking their robustness to assumptions on the explanatory variables X1; : : : ; Xp�1.

Table 4. Empirical size of individual and simultaneous outlier tests for three robust procedures given in
Table 1 for different values of p and n in the simulation grid, when correction (4.5) is applied.

p D 2 p D 10

n D 50 n D 200 n D 50 n D 200

Ind Sim Ind Sim Ind Sim Ind Sim

MMeff085OP 0.0100 0.0093 0.0100 0.0100 0.0100 0.0090 0.0100 0.0096
Sbdp050OP 0.0100 0.0091 0.0100 0.0100 0.0100 0.0090 0.0100 0.0095
LTSbdp050 0.0100 0.0089 0.0100 0.0100 0.0100 0.0079 0.0100 0.0097

The nominal size is 1%.

Table 5. Empirical size as in Table 4 but now for different values of On not belonging to the simulation grid.

p D 2 p D 10

On D 74 On D 170 On D 74 On D 170

Ind Sim Ind Sim Ind Sim Ind Sim

MMeff085OP 0.0102 0.0107 0.0100 0.0102 0.0099 0.0092 0.0096 0.0086
Sbdp050OP 0.0102 0.0108 0.0100 0.0105 0.0100 0.0090 0.0095 0.0083
LTSbdp050 0.0103 0.0111 0.0100 0.0097 0.0101 0.0092 0.0094 0.0074

The nominal size is 1%.
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For p > 10, it is possible to extrapolate our correction factors (4.5) by fitting a parametric
function to the estimates O'�;n;p . Our finding is that the simple quadratic model

OO'�;n;p D  0 C  1p C  2p
2 (4.7)

has, on average, a satisfactory fit when applied to the different robust techniques for a given
value of n and p � 10. We thus compute method-specific estimates of  0,  1 and  2 for each
sample size n in the simulation grid and use the resulting fit OO'�;n;p to predict the appropriate
scaling factor when p > 10, with some care needed for large p, because of the quadratic power
in Equation 4.7. Prediction is thus straightforward when n belongs to the simulation grid. If
instead the sample size On is not in the grid, from (4.7), we compute OO'�;nU ;p and OO'�;nL;p, with
nU and nL defined as in Section 4.2. We then replace O'�;nU ;p and O'�;nL;p in (4.6) with the
estimates OO'�;nU ;p and OO'�;nL;p to obtain the required model-based scaling factor OO'�; On;p . Table 6
reports the resulting estimated empirical sizes of the tests of (1.4) and (1.5) for the three robust
techniques with the worst performance in Section 3.2, for p D 12 and p D 15. The only
problems occur when n is small and p is large, especially for simultaneous size, even if the size
is acceptable when compared with the levels shown in Figures 1–4.

Another extension is the possibility of computing a single scaling factor (4.5) for groups of
different estimators. From this grouping, we might tolerate a slight deterioration in performance
but with the advantages of simplicity and practical usability of our approach. According to the
results described in Section 4.2, it does not seem reasonable to cluster techniques with different
bdp. However, it might be sensible to use the same threshold for soft trimming procedures
adopting different � functions and/or varying levels of nominal efficiency. We thus consider the
following possible aggregations of correction factors:

(1) MM-estimators with the same value of eff and different � functions;
(2) MM-estimators with different values of eff and different � functions;
(3) S-estimators with bdp D 0:50 and different � functions.

Table 6. Empirical size of individual and simultaneous outlier tests for three robust procedures given in
Table 1 and for different values of p and On outside the simulation grid, when correction (4.7) is applied.

p D 12 p D 15

On D 74 On D 170 On D 74 On D 170

Ind Sim Ind Sim Ind Sim Ind Sim

MMeff085OP 0.0165 0.0244 0.0109 0.0118 0.0288 0.0651 0.0121 0.0136
Sbdp050OP 0.0135 0.0168 0.0109 0.0098 0.0208 0.0400 0.0114 0.0118
LTSbdp050 0.0138 0.0162 0.0121 0.0139 0.0216 0.0405 0.0152 0.0191

The nominal size is 1%.

Table 7. Empirical size of individual and simultaneous outlier tests for the robust procedures given in Table 4,
when the average correction in the corresponding group is applied.

p D 2 p D 10

n D 50 n D 200 n D 50 n D 200

Estimator Group Ind Sim Ind Sim Ind Sim Ind Sim

MMeff085OP 1 0.0115 0.0122 0.0105 0.0114 0.0173 0.0219 0.0120 0.0133
MMeff085OP 2 0.0122 0.0125 0.0107 0.0115 0.0204 0.0277 0.0130 0.0140
Sbdp050OP 3 0.0115 0.0112 0.0105 0.0116 0.0154 0.0188 0.0121 0.0161

The nominal size is 1%.
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We repeat the analysis of Table 4, with the method-specific scaling factors (4.5) now replaced by
their group averages. Table 7 shows the results. Our corrections remain effective, with empirical
sizes not far from the nominal 1%, even when we merge with respect to both efficiency level
and � function (Group 2). We thus conclude that for soft trimming procedures, the adoption of
a general scaling factor for all � functions and values of eff is a practical option, unless there
are requirements to stick precisely to the prescribed nominal level of false detections.

Finally, we investigate to what extent our approach is robust when the observed values of
the explanatory variables come from distributions different from the Gaussian. We apply our
scaling factor (4.5) to samples in which X1; : : : ; Xp�1 are generated from the chi-square dis-
tribution (Table 8) and from the Student’s t distribution (Table 9), both with df D 5. We only
consider the least favourable scenario by focusing on the three robust techniques with the worst
performance in Section 3.2. Under these two scenarios, the performance of our procedure is
generally very good, with empirical sizes still close to the nominal 1%.

5 Detection Properties of the Robust Diagnostics

We have shown so far that our diagnostic procedure derived from high-breakdown estimation
provides reliable inferences on the n individual hypotheses (1.4) and on the simultaneous null
(1.5) under a wide spectrum of specifications of the normal regression model (1.1). However,
for the practical usability of the method, it is also important to evaluate its performance when the
standard model only holds for a proportion of the data and outliers are present. It is reasonable
to expect that the adoption of our correction factors O'�; On;p , which downweight the estimated
residuals, will produce some loss in the power to detect contaminated observations, but the
price to pay should not be too high. We thus compare the behaviour of our diagnostics with the
standard robust ones under two alternative contamination schemes.

Table 8. Empirical size of individual and simultaneous outlier tests for the robust procedures given in
Table 4, when the observed values ofX1; : : : ;Xp�1 are generated from the 	2

5 distribution, for different
values of p and n.

p D 2 p D 10

n D 50 n D 200 n D 50 n D 200

Ind Sim Ind Sim Ind Sim Ind Sim

MMeff085OP 0.0098 0.0077 0.0100 0.0100 0.0102 0.0104 0.0100 0.0079
Sbdp050OP 0.0099 0.0104 0.0100 0.0098 0.0101 0.0109 0.0103 0.0104
LTSbdp050 0.0101 0.0121 0.0101 0.0096 0.0110 0.0103 0.0113 0.0249

The nominal size is 1%.

Table 9. Empirical size of individual and simultaneous outlier tests for the robust procedures given in
Table 4, when the observed values ofX1; : : : ;Xp�1 are generated from the t5 distribution, for different
values of p and n.

p D 2 p D 10

n D 50 n D 200 n D 50 n D 200

Ind Sim Ind Sim Ind Sim Ind Sim

MMeff085OP 0.0099 0.0084 0.0101 0.0086 0.0105 0.0100 0.0101 0.0081
Sbdp050OP 0.0100 0.0086 0.0102 0.0094 0.0105 0.0092 0.0102 0.0090
LTSbdp050 0.0101 0.0111 0.0106 0.0147 0.0113 0.0114 0.0112 0.0196

The nominal size is 1%.
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Our first outlier framework is the contamination model

yi � .1 � �/G0 C �G1 i D 1; : : : ; n; (5.1)

where G0 stands for the distribution of the random variable N.x0iˇ; �
2/, which defines the

postulated null model, and 0 < � < 0:5 is the contamination rate. We define G1 in (5.1) as the
distribution of the random variable

N
�
x0iˇ C �; �

2
�
; (5.2)

for a given level shift �, yielding a so-called ‘vertical outlier’. As in the previous sections,
the explanatory variables X1; : : : ; Xp�1 are generated from the standard multivariate normal
distribution and are then held fixed for each simulation.

Figure 11 reports the empirical performance of our reliable robust diagnostics when testing
the n individual hypotheses (1.4) under contamination model (5.1), for the LTS estimator (2.8)
with bdp D 0:5 and for its reweighted version with weights (2.10), in the case n D 100 and
p D 5. Different values of the contamination rate � and level shift � are considered. In each
simulation setting, 10 000 simulations are performed. We provide Monte Carlo estimates of the
average power

AP D E

�
N1j1

M1

�

and of the false discovery rate
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Figure 11. Plots of average power (AP) (left panels) and false discovery rate (FDR) (right panels) of the tests of the n
individual hypotheses (1.4), at nominal size 1%, for the LTS estimator (2.8) with bdp D 0:5 and for its reweighted version
with weights (2.10), in the case n D 100 and p D 5. Contamination model (5.1), with different values of the contamination
rate 
 and level shift �. In each plot, the upper curve corresponds to the standard robust procedure, while the lower curve
corresponds to the test based on our reliable robust diagnostics. 10 000 simulations for each simulation setting.

International Statistical Review (2015), 0, 0, 1–29
© 2015 The Authors. International Statistical Review © 2015 International Statistical Institute.



Reliable Robust Regression Diagnostics 25

Table 10. Outcome in testing n observations
for outlyingness.

Null hypotheses (1.4)

Not rejected Rejected Total

True N0j0 N1j0 M0

False N0j1 N1j1 M1

Total n�R R n

FDR D E

�
N1j0

R
jR > 0

�
Pr.R > 0/;

where the relevant quantities in the context of outlier detection are defined in Table 10. The
nominal test size is 1%. Figure 12 repeats the analysis for the S-estimator (2.2) with Tukey �
function (2.3) and bdp D 0:5, and for the MM-estimator (2.7) with Tukey � function (2.3)
and eff D 0:85. In all plots, we report the outlier detection performance of both the standard
diagnostics (upper curve) and our corrected procedure (lower curve). Although the power in
identifying contaminated observations is smaller when correction (4.6) is applied, as expected,
we clearly see that in all cases, the shapes of our average power curves are similar to those of
the uncorrected liberal diagnostics and converge to them when � grows. Furthermore, we have
obtained further evidence (not displayed here) that the gap reduces for larger values of n and/or
smaller values of p. We can conclude that our reliable diagnostics do not suffer from masking,
as the standard high-breakdown ones, and share reasonable detection properties under model
(5.1). On the other hand, it is clear from the plots that the impact of false discoveries—now
measured by the FDR—is consistently smaller for our approach than for the standard procedure.
Our method is thus able to reduce the degree of swamping also when outliers are present, not
only under the null model considered in Section 4.2. We could also think of more sophisticated
strategies, such as those developed by Cerioli (2010), Cerioli & Farcomeni (2011) and Lourenco
& Pires (2014), that can improve the ability of our tests to detect contaminated observations.
However, these extensions are not addressed here and will be the subject of future work.

In our second contamination framework, we introduce ‘bad leverage points’ by contaminat-
ing the explanatory variables. This step is performed by replacing in each simulation setting a
proportion � of vectors xl with ´l D

�
1; ´l1; : : : ; ´l.p�1/

�0
, where

´lj � N.�; 1/ l D 1; : : : ; bn�c; j D 1; : : : ; p � 1; (5.3)

for a fixed level shift �. Then, conditionally on the realised values of x1; : : : ; xn, we simulate
our Monte Carlo values of the response as in the postulated model (1.1) with

ˇ0 D ˇ1 D : : : D ˇp�1 D 0:7: (5.4)

This contamination scheme produces observations that clearly deviate from the model describ-
ing the bulk of the data and that can strongly attract the parameter estimates. Figures 13 and 14
report the results, again in terms of average power and false discovery rate, for both the standard
liberal diagnostics and our reliable robust approach. We see that the plots tell virtually the same
story as in the case of vertical outliers. Furthermore, our experience is that different choices for
the values of the regression parameters in (5.4) do not affect the comparison between the two
approaches, although the detection rates might change.
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Figure 12. Plots of average power (AP) and false discovery rate (FDR) as in Figure 11 but now for the S-estimator (2.2) with
the Tukey � function (2.3) and bdp D 0:5, and for the MM-estimator (2.7) with the Tukey � function (2.3) and eff D 0:85.
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Figure 13. Plots of average power (AP) and false discovery rate (FDR) of the tests of the n individual hypotheses (1.4),
at nominal size 1%, for the LTS estimator (2.8) with bdp D 0:5 and for its reweighted version with weights (2.10), in the
case n D 100 and p D 5. Contamination model (5.3) for the explanatory variables giving rise to ‘bad leverage points’,
with different values of the contamination rate 
 and level shift �. In each plot, the upper curve corresponds to the standard
robust procedure, while the lower curve corresponds to the test based on our reliable robust diagnostics. 10 000 simulations
for each simulation setting.
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Figure 14. Plots of average power (AP) and false discovery rate (FDR) as in Figure 13 but now for the S-estimator (2.2) with
the Tukey � function (2.3) and bdp D 0:5, and for the MM-estimator (2.7) with the Tukey � function (2.3) and eff D 0:85.

6 Discussion

In this work, we have studied the behaviour of diagnostic procedures obtained from popular
high-breakdown regression estimators when no outlier is present in the data. We argue that con-
trolling the number of false discoveries is an important issue that arises in several application
fields. We have found that the empirical error rates for many of the available robust techniques
are surprisingly far from the prescribed nominal level, thus considerably limiting their practical
appeal. To overcome this drawback, we have proposed a simulation-based approach to correct
the liberal diagnostics and reach reliable inferences. We have provided extensive evidence that
our approach performs well in many settings of practical interest and for different robust regres-
sion techniques. Furthermore, we have shown that it has reasonably good diagnostic properties
when outlier are present, under different contamination schemes. We thus claim that our cor-
rection method has a wide applicability. We also conjecture that it could be extended to other
high-breakdown procedures not considered here.

The simulated thresholds O&2
� , defined in (4.4), are available from www.riani.it. We have

also implemented a Matlab function, within the FSDA Toolbox (called RobRegrSize/, which
provides the interpolated correction factors of 

4.2–4.3 according to the selected options of
robust estimators, � functions, breakdown point and efficiency.

A more complex research question than the one addressed in this work is to obtain accu-
rate approximations for the distribution of the diagnostic quantities that we consider. To
our knowledge, such approximations are only available for the deviance measures computed
from the forward search (Riani et al., 2009) and for some multivariate (adaptive) trim-
ming estimators (Hardin & Rocke, 2005; Cerioli, 2010). How to extend these distributional
approximations to other classes of high-breakdown regression techniques is the subject of
ongoing research.
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