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a b s t r a c t

The forward search provides data-driven flexible trimming of a Cp statistic for the choice
of regression models that reveals the effect of outliers on model selection. An informed
robust model choice follows. Even in small samples, the statistic has a null distribution
indistinguishable from an F distribution. Limits on acceptable values of the Cp statistic
follow. Two examples ofwidely differing size are discussed. A powerful graphical tool is the
generalized candlestick plot, which summarizes the information on all forward searches
and on the choice of models. A comparison is made with the use ofM-estimation in robust
model choice.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mallows’ Cp is widely used for the selection of a model from among many non-nested regression models. However, the
statistic is a function of two residual sums of squares; it is an aggregate statistic, a function of all the observations. Thus
Cp suffers from the well-known lack of robustness of least squares and provides no evidence of whether or how individual
observations or unidentified structure are affecting the choice of model. In our paper we use the robustness of the data-
driven flexible trimming provided by the forward search to choose regression models in the presence of outliers. Our tools
are new distributional results on Cp in the forward search, and a powerful new version of the Cp plot, which we call a
generalized candlestick plot. Software for our analysis is referenced in Section 6.
We present aggregate Cp and its scaled and shifted F distribution in Section 2. In Section 3.1 we recall the forward search,

which achieves robustness by fitting models to carefully chosen subsets of observations of increasing size, generically m.
This flexible trimming provides the forward search statistic Cp(m) which reveals how the choice of a model depends upon
the observations included in the subset. A second robust method due to Ronchetti and Staudte (1994), using M estimates,
is described in Section 3.2. Theoretical and numerical results on the distribution of Cp(m) are in Section 4. Surprisingly, the
ordering of the observations and the truncation of their distribution has no observable impact on the null distribution of
Cp(m), which is effectively scaled and shifted F .
Our major example is the analysis of 80 observations on ozone concentration in Section 5. The robust and non-robust

aggregate analyses are in Section 5.1. In Section 5.2 we provide forward plots of Cp(m) for one value of p. These plots can be
hard to interpret. In order to summarize this information and to allow comparisons over a range of values of pwe introduce,
in Section 5.3, a powerful new graphic which we call a ‘‘generalized candlestick’’ plot. In Section 5.4 we use this plot to
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identify the inferential effect of the observations entering at the end of the searches for the various models. There seem to
be two observations that have a large effect on the value of Cp(m) and so on the choice of model. These observations are
confirmed as outliers in Section 5.5. The analysis concludes in Section 5.6 with comparisons of the best models when the
outliers are excluded.
Amuch larger example, with 1000 observations, is mentioned in Section 6, where we discussmethods for problemswith

many explanatory variables. The paper concludes in Section 7 with an indication of extensions, in particular to the analysis
of time series data. We stress throughout, that the purpose is not to choose a single model, but to obtain understanding of
the interaction between model choice and outliers, so that we are guided to the selection of a suitable model.

2. Aggregate Cp

There are n univariate observations y. For the linear multiple regressionmodel y = Xβ+ε, X is an n×p full-rankmatrix
of known constants, with ith row xTi . The normal theory assumptions are that the errors εi are i.i.d. N(0, σ

2). The residual
sum of squares from fitting this model to the data is Rp(n).
In the selection of regression variables, σ 2 is estimated from a large regression model with an n× p+ matrix X+, p+ > p,

of which X is submatrix. The unbiased estimator of σ 2 comes from regression on all p+ columns of X+ and can be written

s2 = Rp+(n)/(n− p
+). (1)

Then

Cp = Rp(n)/s2 − n+ 2p = (n− p+)Rp(n)/Rp+(n)− n+ 2p. (2)

One derivation of Cp (Mallows, 1973) is that it provides an estimate of the mean squared error of prediction at the n
observational points from themodel with p linear parameters, provided the full model with p+ parameters and the reduced
model with p parameters yield unbiased estimates of σ 2. Then E{Rp(n)} = (n−p)σ 2, E(s2) = σ 2 and E(Cp) is approximately
p.
Models with small values of Cp are preferred. Statements are often made that those models with values of Cp near p are

acceptable. However, it can be helpful also to consider the distribution of the statistic.
This distribution is given, for example, by Mallows (1973) and by Gilmour (1996). From (2) we require the distribution

of the ratio of two nested residual sums of squares. It is straightforward to show that the required distribution is

Cp ∼ (p+ − p)F + 2p− p+, where F ∼ Fp+−p, n−p+ . (3)

In short, if

F∗ ∼ Fν1,ν2 , E (F∗) = ν2/(ν2 − 2). (4)

Then, from (3),

E (Cp) = p+ 2
p+ − p

n− p+ − 2
. (5)

As n→∞, E (Cp)→ p. Gilmour comments that when n− p+ is small, E(Cp) can be appreciably greater than p. Hurvich and
Tsai (1989) use Taylor series expansions to find a correction for this bias for very small n.

3. Robust approaches

3.1. The forward search and forward Cp

Individual outliers and influential observations in regression models can be detected by the single deletion methods
described in the books of Cook and Weisberg (1982) and of Atkinson (1985). However, these procedures may fail to reveal
multiple outliers, due to masking in which the outliers so affect the parameter estimates as to seem part of the main body
of the data. Multiple outliers can be detected by use of the Forward Search. This method moves from fitting small, robustly
chosen, subsets of the data to fitting all n observations in such a way that unsuspected structure is revealed and outliers, if
any, enter the subset to be fitted towards the end of the search.
The forward search for a single regression model fits subsets of observations of size m to the data, with m0 ≤ m ≤ n.

Let S(m) be the subset of size m found by the forward search, for which the matrix of regressors is X(m). Least squares on
this subset of observations yields parameter estimates β̂(m) and s2(m), the mean square estimate of σ 2 on m − p degrees
of freedom derived from the residual sum of squares Rp(m). Residuals ei(m) can be calculated for all observations including
those not in S(m). The searchmoves forwardwith the augmented subset S(m+1) consisting of the observations with them+1
smallest absolute values of ei(m), i = 1, . . . , n.
To start we takem0 = p+ 1 and so search over subsets of p+ 1 observations to find the subset, out of 3000, that yields

the least median of squares (LMS) estimate of β (Rousseeuw, 1984).
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The Cp criterion (2) for all observations is a function of the residual sums of squares Rp(n) and Rp+(n). For a subset of m
observations we can define the forward value of Cp as

Cp(m) = (m− p+)Rp(m)/Rp+(m)−m+ 2p. (6)

For each m we calculate Cp(m) for all models of interest. In our extended example the models of interest are all those
including an intercept term.
However, some care is needed in interpreting this definition. For each of the models with p parameters, the search may

be different, so that the subset S(m)will depend onwhichmodel is being fitted. This same subset is used to calculate Rp+(m),
so that the estimate s2 in (1) will also depend on the particular model being evaluated as well as on m. Since the searches
are for different models, outliers will not necessarily enter in the same order for all models.

3.2. M Estimation

Ronchetti and Staudte (1994) use M-estimation to replace least squares in both the submodel of interest and the full
model. They argue that the use of robust estimates requires not only the replacement of the residual sums of squares in (2)
by their robust versions, but also adjustment to the coefficient−(n− 2p).
AnM estimator β̃ is the solution of the equation

n∑
i=1

η(xi, yi − xTi β)xi = 0, (7)

for some function η(x, e). The weight attached to each observation is w(x, e) = η(x, e)/e, with outlying observations
appreciably downweighted. The parameter estimate β̃ yields estimated weights ŵ and the analogue of the residual sum
of squares Rp(n) in (2) is

Wp =
n∑
i=1

ŵ2i r
2
i =

n∑
i=1

ŵ2i (yi − ŷi)
2. (8)

The robust version of Cp, by analogy with (2) is written

RCp = Wp/σ̂ 2 − (Up − Vp) = (n− p+)Wp/Wp+ − (Up − Vp). (9)

In (9) Up and Vp are constants that depend on the particularM estimator that is used.
Although the development followed by Ronchetti and Staudte (1994) is more general, in our comparisons in Section 5

we use the Huber function in which

η(x, ε) = ψc(ε) = max{−c,min(ε, c)}. (10)

Then Vp ' p. However the expression for Up is more complicated, depending on the expectation of products of ψ and its
first derivative. When all weights are identically one, RCp reduces to Mallows’ Cp. Computational reasons for our choice of
the Huber function are mentioned in Section 6.

4. The distribution of Cp in the forward search

The distributional results of Section 2 apply when Cp is calculated from the full sample. But, in the forward search with
m < nwe order the observations during the search and take the centralm residuals ei(m) to calculate the sums of squares
Rp+(m) and Rp(m). These sums of squares are accordingly based on truncated samples and will have smaller expectations
than those based on a full sample ofm observations. Specifically E{s2(m)} < σ 2. However, we now show that the full sample
distribution holds to a good approximation with n replaced bym. That is (3) becomes

Cp(m) ∼ (p+ − p)F + 2p− p+, where F ∼ Fp+−p,m−p+ , (11)

so that the only change is in the degrees of freedom of the F distribution. We explore this indication and provide results
supporting (11) as the distribution of Cp(m).
The argument is in two parts. First we ignore the departure from normality caused by truncation and consider the effect

of the ordering of the observations on the estimation of σ 2. Then we combine simulations with results on the robustness of
F tests to departures from normality to show how well the approximation (11) holds.
In the absence of outliers the estimates of the parameters β remain sensibly constant during the search whereas the

value of s2 increases as the search progresses and more remote observations enter the subset S(m). The result is a forward
plot of t statistics that decrease precipitously from large values at the beginning of the search. Figure 3.12 of Atkinson and
Riani (2000) shows an example.
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To obtain a statistic with a distribution closer to the standard t distribution, Atkinson and Riani (2002) introduced a
forward added variable t test that is a special case of Cp(m). In the general case of Cp(m) let

X+ =
(
X
... X−

)
. (12)

In the t test X− is one of the columns of X+. The forward search is performed using the p+ − 1 variables in X . Calculation
of the t test for the vector X− can use the added variable for X− (Atkinson, 1985, Section 5.2). Because of the orthogonality
of the various residuals involved in the calculation, the resulting t statistic has a null t distribution if the truncation of the
distribution of the residuals is ignored.
To extend this argument to the distribution of Cp(m) we make the usual analysis of variance breakdown of sums of

squares in (6) and write

Rp(m) = Rp+|p(m)+ Rp+(m), (13)

so that Rp+|p(m) is the reduction in the residual sum of squares in going from the model with p parameters to that with p+.
Then the stochastic part of the distribution of Cp(m) in (6) can be written

Rp(m)/Rp+(m) = Rp+|p(m)/Rp+(m)+ 1, (14)

proportional to the F test for the addition of the extra p+ − p variables not in the reduced model. This is the multivariate
generalization of the added variable t test of Atkinson and Riani (2002) and the orthogonality of the distribution to the search
can again be shown by the orthogonality of the residuals of the added variables. The difference is that now the adjustments
using the variables are not restricted to the addition of single terms to the model.
In the calculation of added variable t tests a single search is used for each model and the added variable statistic

constructed. Likewise, in the calculation of Cp(m), there is a single search for each model which is used for the calculation of
the two sums of squares Rp+(m) and Rp(m). As a consequence, the distributional results for Cp(m) are a direct multivariate
generalization of those for the t test.
We now need to consider the effect of the truncation of the distribution of the errors on the sums of squares Rp+(m) and

Rp(m). For central sets ofm residuals we will have

E {s2(m)} = κ(m)σ 2. (15)

The factor κ(m) depends on the particular central m observations chosen by the forward search. Riani et al. (2009) use
the results of Tallis (1963) on truncated distributions to calculate related factors for elliptically truncated multivariate
distributions. However the value of the factor is unimportant in the present context, as κ(m) occurs in both the numerator
and the denominator of (14) and so cancels.
There remains the effect of the shape of the truncated distribution. In the literature on the properties of tests in least

squares regression when the errors are non-normal, Box and Watson (1962) show that the sensitivity of F tests like (14) to
non-normality of the errors depends not only on the distribution of y (which they take to be symmetrical, so that kurtosis
is the dominant property) but also on the distribution of X+. The results rely on a central-limit theorem for the sufficient
statistics entering the calculation of Rp+(m) and Rp(m); the more skewed the distribution of X+ values, the larger does the
sample have to be for the F distribution to be an excellent approximation to that of the calculated statistic.
For standard experimental designs, such as factorials, they conclude that ‘‘an unimportant degree of sensitivity is to

be expected’’ to departures from normality, and, that when X+ is drawn from the normal distribution, the sensitivity is
further reduced. The numerical results of Prentice (1974) confirm these results. His examples are for appreciably smaller
sample sizes than we monitor at the beginning of the search and for much more extreme conditions in X+ than we expect
to encounter in regression analysis.
To confirm these results on the lack of effect of symmetrical truncation on the distribution of Cp(m)we ran an exhaustive

simulation study. In the results reported here we calculated Cp for linear regression against quadratic regression on a single
variable x. There were ten observations in each set of data, so that the F distribution in (11) was on 1 and 7 degrees of
freedom. We generated standard normal samples of ten observations and, separately, samples of ten from the truncated
normal distribution

Y = Φ−1(Utrunc) with Utrunc ∼ U(0.4, 0.6).

The truncation corresponds tom/n = 0.2, implying that we are interested in properties over the last 80% of the search. The
values of xwere the same for all samples.
Two features are of interest. One is whether the values of Cp(m) for the normally distributed errors have a noticeably

different distribution from those from the truncated normal. The second is whether the distribution in (11) holds for one or
both sets of errors so that

Cp(10)− 1 ∼ F1,7. (16)

There were two further sets of sample sizes in our simulation. We repeated the calculation of the value of Cp(10) a
thousand times and then calculated the empirical 1%, 10%, 25%, 50%, 75%, 90% and 99% of this distribution of the statistic. In
order to obtain an idea of the reliability of these estimates of quantiles we repeated this calculation ten thousand times.
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Fig. 1. Small sample distribution of forward Cp(10) from10,000 simulations. Empirical distribution of 1%, 10%, 25%, 50%, 75%, 90% and 99% points compared
with the theoretical distribution (16). Continuous line, normal observations, dotted line, truncated observations. Agreement with theory is excellent.

The results of this appreciable sized simulation study are summarized in Fig. 1. We present the empirical distribution
functions of the seven percentage points of Cp(10) converted using (16) into percentage points of the theoretical distribution
of Cp(10). This apparently uninteresting plot is in fact full of valuable information about the distribution of our statistic.
The results for the normal distribution are shown as continuous curves and those for the 80% truncated distribution as

dashed lines. There is remarkably little difference between the two distributions of the percentage points. This is especially
so in the tails of the distribution, which is the region of inferential importance. The second point is that the medians of
the empirical distributions are close to the nominal values; not only does truncation have no effect, but the small sample
effects mentioned by Hurvich and Tsai (1989) and Gilmour (1996) do not affect even this severe a truncation. In selecting
models we will usually be interested in the last part of the search, where truncation is much less. Further simulations, with
asymmetrical truncations and various sample sizes, confirmed these findings.

5. The ozone data

5.1. Background and aggregate model selection

As a comparatively small example with sufficiently many potential explanatory variables to be interesting, we look at
part of the data on ozone concentration used by Breiman and Friedman (1985) when introducing the ACE algorithm. These
are a series of 330 daily measurements, from the beginning of the year, of ozone concentration and eight meteorological
variables in California.
Atkinson and Riani (2000, Section 3.4) analyse the first 80 observations, so starting in January. They find that the data

should be transformed by taking logs and that a linear time trend should be considered as one of the explanatory variables.
Together with the constant term, we therefore have p+ = 10.
Fig. 2 is a plot of aggregate Cp for these 80 observations from the ozone data in which the smaller values of Cp for subset

models are plotted against p, together with the 1% and 99% points of the scaled and shifted F distribution (3). The plot has a
typical shape. Initially, for small p, all models have values of Cp lyingwell outside the envelope, and so these smallmodels are
not satisfactory. The best relatively small models are for p = 6 and 7. All models we will discuss include a constant and the
time trend, so wewill often not explicitly mention them. Themodel with smallest Cp for p = 6 also includes variables 2, 5, 6
and 8. This is the model selected by Atkinson and Riani (2000, p. 70). In the second-best model for p = 6, variable 4 replaces
variable 6, giving the model including variables 2, 4, 5 and 8. The best model for p = 7 includes both these variables. Good
models for larger values of p add further variables to the model for p = 7, giving rise to larger values of Cp. These results are
summarized in Table 1.
Fig. 3 gives a similar plot for the robust RCp(n) statistic of Ronchetti and Staudte (1994), but without envelopes, since we

do not know the distribution of this statistic. The RCp values were calculated with the S-Plus routine RCp using Huber’s ψ
function (10) with c equal to 1.345. A small point is that the figure from library robust has been redrawn to include dots for
the value of robust RCp for eachmodel, in addition to the somewhat extensive labels.Wewere surprised at the improvement
in interpretability afforded by this small change. In Fig. 3 the minimum RCp is for a model with p = 8 and variables 1, 3, 4,
5, 6 and 8, whereas the best model for p = 7 is for variables 1, 4, 6, 7 and 8, with 1, 4, 5, 6 and 8 giving a slightly larger value
of RCp. These models are again listed in Table 1. In this case the best model for p = 8 does not include the best model for
p = 7, although the second-best model does.



M. Riani, A.C. Atkinson / Computational Statistics and Data Analysis 54 (2010) 3300–3312 3305

Fig. 2. Ozone data: Cp plot. The combination of the two best models for p = 6 yields the best model for p = 7. Bands are the 2.5% and 97.5% points of the
scaled and shifted F distribution (3).

Fig. 3. Ozone data: plot of robust RCp of Ronchetti and Staudte. Note the very sharp minimum compared with that in the non-robust Cp plot of Fig. 2.

Table 1
Ozone data: some models, including an intercept and time, selected by robust and non-robust aggregate Cp .

p Variables

Non-robust
7 2, 4, 5, 6, 8
6 2, 5, 6, 8 2, 4, 5, 8
Robust
8 1, 3, 4, 5, 6, 8 1, 4, 5, 6, 7, 8
7 1, 4, 6, 7, 8 1, 4, 5, 6, 8

There are three general comments about Fig. 3. One is that the robust method has selected models with more variables
than the non-robust method. The second is that RCp has a much sharper increase in values away from the minimum; the
model appears to be selected with less ambiguity. The third is that the small values of the robust statistic are lower than
those in Fig. 2; the minimum, for p = 8, is−5.24. As (3) shows, the lower limit of non-robust Cp is 2p− p+ = 6 when p = 8.
The occurrence of this negative value rules out the scaled and shifted F distribution (3) for the robust Cp statistic.
In contrast, the model with minimum Cp in Fig. 2 is for p = 7 and includes the constant, the trend and variables 2, 4, 5, 6

and 8. However, this model may be too large, since the t values for x4 and x6 are respectively−1.64 and 1.71. Our purpose
is to use the forward search to determine how the choice of model is influenced by outliers or other unsuspected structure.
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Fig. 4. Forward plots of Cp(m) for the ozone data when p = 6 form from 40 to 80. There is a dramatic change in the ordering of the models in the last two
steps of the search. Bands are the 2.5% and 97.5% points of the scaled and shifted F distribution (11).

5.2. Forward Cp plots

Whenwe apply the forward search to model selection we obtain a forward plot of Cp(m) for each model. Thus the points
in Figs. 2 and 3 are replaced by the curves of forward plots for all values of m that are of interest. The resulting quantity of
graphical output can be overwhelming. We first illustrate the structure of forward plots of Cp(m) and then, in Section 5.3,
introduce a new plot that cogently summarizes this information.
Atkinson and Riani (2008) in their analysis of the ozone data give separate plots of forward Cp for values of p from 4 to

7. In Fig. 4 we show only C6(m) from m = 40, including only those models that have small values of C6(m) at some point
in this region of the search. Many of the curves increase in the last two steps, suggesting the presence of two influential
observations. The plot shows that, whenm = 78, minimizing the value of Cp(78) leads to the choice of model with terms 2,
4, 5 and 6, although this is only the third best model of this size whenm = n. This plot clearly and elegantly shows how the
choice of model is being influenced by the last two observations to enter the forward search. It also shows that models such
as 2, 4, 5 and 8 and 2, 5, 6 and 8 behave very differently from 2, 4, 5 and 6. Although these two models have small values of
C6(80) that are indeed less than the values atm = 78, the values of C6(m) go above the 97.5% bound of the scaled and shifted
F distribution in the region of m shown in the plot. The unstable behaviour with m of some of these curves is indicative of
masking, that is of the hiding of the inferential behaviour of one outlier by the presence of another. Since different models
may lead to different searches through the data, the value ofm at which the outliers, if any, enter the subset will depend on
the model. The plots of Cp(m) in Fig. 4 do indeed show jumps at a variety of values of m. However, several models show a
sharp increase in value in the last two steps of the search.

5.3. The generalized candlestick plot

We now generalize Cp plots such as Fig. 2 to contain a summary, for each model, of the information in the trajectory of
the forward plots of Cp(m) in Fig. 4. Our starting point is the ‘‘candlestick’’ plot used to summarize such quantities as the
high, low and closing values of stocks. Google provides many references. However, we need a generalization of this plot.
Since we expect any outliers to enter the search towards the end, the last few values of Cp(m) are of particular interest, as
is the comparison of these values with earlier average behaviour.
Fig. 5 shows our generalized candlestick plot for 71models in the range p = 3 to 8. All thesemodels have trajectories that,

over the last 20% of the search (that is in the last 16 steps) had one of the five smallest values of Cp(m) for their particular
value of p. The vertical lines in the plot summarize the values of Cp(m) for each model in the central part of the search, that
is form = n− 16 through n− 4. Individual symbols are reserved for the last four values. The definition of the candlesticks
is:
Lowest Value; minimum in the central part of the search;
Highest Value; maximum in the central part of the search;
Central Box; mean and median of the values in the central part of the search; filled if mean<median;
Stars; the values in steps n− 3, n− 2 and n− 1 if these lie outside the box;
Unfilled Circle; the final value.

Thus each point in the standard non-robust Cp plot such as Fig. 2 is replaced by a single vertical line and up to four extra
symbols.
The general shape of the plot in Fig. 5 is similar to that of the non-robust Cp plot in Fig. 2. For small values of p all models

have large values of Cp(m) over the last 16 values of m. Conversely, for large p there are many models with small values
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Fig. 5. Generalized candlestick plot for Cp(m),m = 64− 80, for the 71 best models in this range ofm; 2.5% and 97.5% points of the distribution of Cp from
(3).

Fig. 6. Ozone data: generalized candlestick plot for Cp(m),m = 64 − 80, for the 38 best models in this range of m with p = 5, 6 and 7; 2.5% and 97.5%
points of the distribution of Cp (detail of Fig. 5). Note in particular the highlighted models 4, 5 and 6 and also 2, 4, 5 and 6 (all including time), plotted with
a thicker vertical line.

of Cp(m) over most of the range. What we have not seen before is the decrease in variability in the values of Cp(m) as p
increases. When p is too small, the values of Cp(m) respond with extreme sensitivity to the addition of extra observations.
The indication of Fig. 5 is that values of p of 5, 6 or 7 should yield a satisfactorymodel. Accordingly, we reproduce in Fig. 6

the generalized candlestick plot of Fig. 5 for these three values, adding labels to identify the models.
Two models are highlighted in this figure. The first, for p = 5 has, in addition to time and an intercept, the variables 4, 5

and 6. This has small and stable values of Cp(m), except for the last two steps of the search. The other, for p = 6 adds variable
2. This model, with stable values of Cp(m) over the range studied was not included in Table 1 because, as the unfilled circles
in the plot show, it had only the third smallest value of C6 at the end of the search. We now consider the effect of individual
observations at the end of the search on the values of Cp(m).

5.4. Individual observations and Cp(m)

The ordering of observations by the forward search enables us to pinpoint the influential effect of individual observations.
Table 2 lists the last observation to enter the subset for the 71 models plotted in Fig. 5. For the range of plausible values of
p, observation 65 is the last to enter in all but one search and may well be an outlier. We can however obtain more incisive
information from the generalized candlestick plot.
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Table 2
Ozone data: frequency of the last observation to enter the forward search for the 71 models of Fig. 5 as a function of p.

p Observation number
13 31 53 56 65 80

3 1 1 3 2 3 2
4 1 1 0 3 5 0
5 0 0 0 1 14 0
6 0 0 0 0 12 0
7 0 0 0 0 11 0
8 0 0 0 0 11 0

Fig. 7. Ozone data: generalized candlestick plot of Cp(m) for the 38 models in Fig. 6. The observations entering in the final part of the individual searches
are marked. All models include a term in time.

Fig. 7 is the generalized candlestick plot for the 38 models of Fig. 6 with, where appropriate, the last four values of Cp(m)
labelled with the observation entering the subset. observation 65 is last to enter in all but one search and this observation
occurs with the circles indicating the final value of Cp(m). For the model 4, 5 and 6 highlighted in Fig. 6 we can see that
deletion of observation 65 causes the value of Cp to fall below the 97.5% envelope; further deletion of observation 56 causes
another large decrease. The second model highlighted in Fig. 6 is 2, 4, 5 and 6. Although deletion of observations 65 and 56
does cause a decrease in the values of Cp(m), this effect is less than that for the smaller model. The values for the twomodels
with the smallest values of Cp at the end of the search both increase slightly when observation 65 is deleted.
It is clear from this plot that deletion of observations 65 and 56 has a significant effect on model selection. We now

consider whether these observations can be treated as outlying and so removed from the analysis of the data.

5.5. Outlier detection

To detect outliers we scale the least squares residuals ei(m) of Section 3.1 to give the deletion residuals ri(m) for the
n−m observations not in S(m), the scaling depending on the leverage of the observation and on the estimate of σ 2. Let imin
denote the observation with the minimum absolute deletion residual among those not in S(m). To test whether observation
imin is an outlier we use the absolute value of rimin(m) as a test statistic. If the absolute value is too large, observation imin is
considered to be an outlier, as well as all other observations not in S(m). Riani and Atkinson (2007) give further details and
discuss the calculation of approximations to the pointwise distribution of the test statistic, which we use.
The upper panel of Fig. 8 shows a forward plot of the minimum deletion residual ri(m) for all 80 observations when the

model contains variables 4, 5 and 6, together with 1%, 50% and 99% envelopes. The last two observations are clearly revealed
as outlying. If they are removed and the envelopes recalculated for n = 78 we obtain the plot in the lower panel of Fig. 8.
There is no evidence of further outlying observations. We accordingly continue our analysis on the set of 78 observations.
Table 3 lists the t statistics for the terms in the two highlightedmodels in Fig. 6when n = 78.When themodel includes 2,

4, 5 and 6 neither x2 nor x6 are quite significant at the 1% level. However, when x2 is removed from the model, all remaining
terms have absolute t values> 3. The standard backward analysis of these 78 data points based on t values would lead to
the model 2, 4 and 5 for p = 5. Fig. 6 shows that further omission of two more observations leads to an appreciable value of
Cp(m) for such a model.
Atkinson and Riani (2007) use forward plots of the added variable t statistics of Atkinson and Riani (2002) to build a

model for the ozone data. Their Fig. 5 shows the evolution of the t statistics during the forward search for the six parameter
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Table 3
Ozone data: t statistics of the two best models after removing outliers (n = 78).

Term Model
Time 4 5 6 Time 2 4 5 6

Intercept −7.81 −5.74
Time 9.15 8.99
x2 – −2.57
x4 −3.98 −3.01
x5 8.91 6.80
x6 3.03 2.39

Fig. 8. Ozone data, outlier detection, model with variables time and 4, 5 and 6. Upper panel, forward plot of minimum deletion residual ri(m), with 1%,
50% and 99% envelopes for n = 80. Lower panel, forward plot after deletion of observations 56 and 65; envelopes for n = 78.

model. Aroundm = 75 both x6 and x4 have t values close to those in Table 3. However, the term in x2 has a decreasing t value
as observations are deleted. Their plot does serve to complement the information obtained from the generalized candlestick
plot. However, unless the explanatory variables are nearly orthogonal, one plot with p − 1 curves will be needed for each
model and a summary, such as that of Fig. 6, becomes essential for building models with several explanatory variables. Of
course, if the explanatory variables are nearly orthogonal, perhaps from a designed experiment, it will not be necessary to
use formal model selection techniques such as Cp.

5.6. Robust and forward model building

To conclude our analysis of the ozone data we compare the two models of Table 3 with the models indicated by the
robust procedure of Ronchetti and Staudte (1994) given in Table 1, for which p = 7 and 8. The generalized candlestick plot
for these higher values of p is given in Fig. 9, with three models highlighted. The fourth model, 1, 4, 6, 7 and 8, does not
qualify for inclusion.
It is not clear from this plot why these models have been selected. Although the three shown have small and stable

values of Cp(m) over the central part of the search, so do several other models with these values of p. In addition,
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Fig. 9. Ozone data: generalized candlestick plot for Cp(m),m = 64− 80, for the best models with p = 6, 7 and 8. The three plausible models from Table 1
found by the robust procedure of Ronchetti and Staudte are highlighted.

Fig. 10. Ozone data: forward plots of Cp(m) for selected models from Tables 1 and 3.

we have found smaller models with small values of Cp which have stable behaviour once the two outliers have been
deleted.
We expand the information on these fivemodels from the generalized candlestick plot by showing, in Fig. 10, the forward

plots of the values of Cp(m) on which the candlesticks were based. The effect of deletion of the two outliers on the values
for the model 4, 5 and 6 is evident; once observations 56 and 65 are deleted this model has a small value of Cp(m). For most
of the values ofm covered by the plot, the values for the model 2, 4, 5 and 6 are the smallest, although showing, to a lesser
extent, the effect of deletion. The three models indicated by use of the robust Cp have similar, more stable and rather larger
values of Cp(m). These values are less affected by the outliers than are those of the two smaller models. Fig. 5 indicates that
this form of robustness may be a consequence of fitting a model with many terms.

6. Larger data sets

For a larger and more complex example we analysed data on factors influencing the use of credit and other cards. There
were 1000 observations on the customers of a bank, a single response and nine explanatory variables. The results were
similar to those obtained here. The larger number of observations did not cause any problems with computational time.
Problems with size will however occur as the number of explanatory variables p+ increases. One solution is to group

the variables, preferably into groups reflecting common factors, and to build the model including and excluding groups of
variables. Those groups that contain no variables of interest (that is, those for which Cp(m) in the central part of the search
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is always above the 99% threshold) can be dropped and the grouping repeated with smaller groups until a few individual
factors emerge as candidates for inclusion in a model.
The Matlab software used in this paper is part of the FSDA (Forward Search Data Analysis) toolbox which can be

downloaded, free of charge, from the webpage www.riani.it in the section ‘‘Matlab code’’. Full documentation is included.
The importance of software is highlighted by our choice of robust method in Section 5.6 which was constrained by the
available software.

7. Discussion

An appreciable number of robust selection criteria for the comparison of sets of models have already been presented
in the statistical literature. We have indeed already compared our results with some of those of Ronchetti and Staudte
(1994). Ronchetti (1997) and Ronchetti et al. (1997) augment this work with robust versions of AIC, as well as Cp and
cross-validation. Sommer and Huggins (1996) proposed model selection based on Wald tests. Qian and Künsch (1998)
introduced a new criterion for robust model selection in linear models based on generalized Huberization and on the
theory of stochastic complexity. Agostinelli (2002) proposed a robust modification of AIC and Cp using aweighted likelihood
methodology. Morgenthaler et al. (2003) constructed a selection technique for simultaneous identification of both the
correct model structure and of unusual observations. Müller andWelsh (2005) introduced a selection criterion that, for each
model, combines a measure of goodness of fit, a penalty term for the number of parameters and the expected prediction
error, conditional on the observed sample. Maronna et al. (2006) proposed a robust Final Prediction Error criterion. Salibian-
Barrera and Van Aelst (2008) based robust model selection criteria onMM-estimators for the prediction error of eachmodel
by using the fast robust bootstrap. Lutz et al. (2008) suggested five robustifications of L2 Boosting for linear regression
and considered various robustness properties. McCann and Welsch (2007) and Khan et al. (2007a) robustified the stepwise
algorithm for Least Angle Regression, while Khan et al. (2007b) investigated robust and computationally efficient versions
of classical forward selection and stepwise methods for model selection.
It is our opinion that none of the above-listed robust methods, at least as presented, enables us to appreciate the

inferential effect that each unit, outlier or not, leverage or not, exerts on themodel selection procedure. In this paperwe have
shown that our forward analysis using the values of Cp(m), and their summary in the generalized candlestick plot, provide
a powerful method of ascertaining the effect of individual observations and outliers on the choice of a model using Cp. We
are thus led to a robust and informed choice of model. The emphasis in the robust methods tends, on the contrary, to be on
the properties of the estimates obtained. We suspect that much of the information we obtain on the effects of individual
observations can be recovered by careful analysis of the weights that come from the various robust procedures. We look
forward to seeing such analyses.
Forward methods, similar to those of our paper, can be applied to model choice with AIC (Akaike, 1974), of which Cp is a

special case for regression. A general disadvantage of AIC is that the distribution of the statistic is only known asymptotically.
As we have seen, knowledge of the distribution of Cp(m) is helpful in calibrating our plots.
A major area of employment of AIC is in the selection of time series models (Tong, 2001, Section 9). For autoregressive

models an alterative is the straightforward use of Cp, which is however not possible for moving average models. Riani and
Atkinson (submitted for publication) accordingly develop a Cp statisticwith knowndistributional properties for the selection
of time series ARMAmodels with regressors. The extension of the diagnostic and robustmethods of the current paper to this
time series Cp statistic is straightforward, but does pose appreciable numerical problems as, during the search, the Kalman
filter has to be run many times with a large number of missing observations.
The starting point for our paper was the desire to go beyond methods of model choice based on aggregate statistics.

We note that Bayesian methods, such as Green (1995), which work on the likelihood and a prior distribution, also use
aggregate statistics. The problem of finding a forward procedure when each sample size has to be evaluated using MCMC
methodology seems to us to be extremely challenging. Our approach can be easily extended to more general models such
as those considered by Cantoni and Ronchetti (2001).
Finally we stress that, in our opinion, the mechanical use of Cp, or of its forward version, is to be avoided. Any model

selected by use of these methods should be subject to customary statistical checks, not only tests of outliers and of the
significance of the terms in the model, but to a full diagnostic forward analysis (Atkinson and Riani, 2000).
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