BREAKDOWN AND EFFICIENCY IN ROBUST REGRESSION
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ABSTRACT. In this paper we consider regression data possibly contted with the presence of
multiple outliers. The goal of this work is to compare theoimhation which can be extracted from the
use of traditional robust estimators of regression whightdrcombine robustness and efficiency with
those which use a flexible level of trimming and are based eridtward search estimator.

1 INTRODUCTION

Data are an overwhelming feature of modern life. As the arhofidata increases so do the
challenges facing the statistician in trying to extracbimfiation from ever larger data sets.
We argue that larger data sets are also more complex andedtpxible multiple analyses
in order to reveal their structure. Only then all informatan be efficiently extracted.

Given that the presence of outliers can have strong effedtseoresults of statistical mod-
els, it is necessary to use the tools of robust statisticsdtinpinary detect them. However,
many asymptotic results available in the robustness titeearequire regularity conditions
that are difficult to verify in practice, or that may not beidaFor example, typical regularity
conditions under which asymptotic properties of robustrestiors have been studied include:
symmetric errors for the good part of the data (Simpson artalyd 998); known error scale
(Markatou and Hettmansperger, 1990); or conditions thailie the expected value of the
estimating equations under the unknown distribution ottt (e.g. Huber, 1981). Salibian-
Barrera and Zamar (2004) found that there is a trade-off etvthe breakdown point of the
S-estimator (to be described in section 3) and the size afigighbourhood where uniform
asymptotics hold.

In this paper we give an example where even in the presenceafeapopulation and
some isolated or clustered outliers, the use of traditionialist methods based on a prefixed
level of trimming and a predetermined asymptotic level diteafncy can offer a distort view
of the data. The goal of this paper is to compare the infolgnatihich can be extracted from
the use of traditional robust estimators with those whicmemut from the use a flexible
level of trimming like that based on the forward search (RiAtkinson and Cerioli, 2009;
Atkinson, Riani and Cerioli, 2010).



The paper is structured as follows. In section 2 we introdbieeotation. In section 3 we
recall the main robust estimators in regression and extilaichoices which have to be made
to obtain robust estimators which asymptotically try to &dme robustness and efficiency. In
section 4 we briefly recall the basic steps of the forwarddealgorithm. In section 5 we use
a well known dataset which contains 6 masked outliers angoaeoethe information coming
from the different approaches.

2 NOTATION

Consider the usual regression model with random carrieerevtve observe i.i.d. random
vectors ¢, x') € OP*L i =1,....n, wherey; € 0 andx € 0P satisfy

yi =X B+ui i=1,...n 1)

u; are random errors independent from the covaria¢¢svhich have common variance equal
to 0 andp € 0P is the parameter of interest. We are concerned with the cheeava certain
proportion of the observations may not follow model (1) adadBiven an estimator @, say

B, the residuals are defined as

r(B) =y —x p.

3 TRADITIONAL ROBUST ESTIMATORS WHICH USE A FIXED LEVEL OF
TRIMMING

Traditional robust estimators attempt to limit the influeraf outliers by replacing in the
estimation offf the square of the residuals with a less rapidly increasiag fonction or by
a functionp of the residuals themselves which is bounded. The regredsiestimate of
locationf3 (sayPwm) is the value that minimizes the following objective furncti

ip (_ﬁ(im)) =min. (2)

Perhaps the most popular choice for ghieinction in (2) is Tukey’s Biweight function

X+ X X <c

p— 3 2 Ted MRS ©)
& if |X| > c,

wherec > 0 is a tuning constant which is linked to the breakdown poirite estimator of.

In equation (2) it is assumed thais known. However, when this condition is not fulfilled, it

is necessary to use an auxiliary robust scale estin@t® (makeﬁM scale equivariant.
An M-estimator of scal@y is defined as the solution to the following equation
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wherer; = ri(f&M), Om = G(rl([}M),...,rn([}M)) andK is a constant which is linked to the
breakdown point of the scale estimator. It is worthwhile ddice that in equation (4) we have
used the symbagd; because the function which is used to obtain the scale estimator is not
necessarily the same which is used in (2).

If we take the minimum value ady which satisfies equation (4), we obtain the so called
S-estimate of scaleds) and the associated estimate of the vector of regressidficgeets
([33) The wordS estimator comes from the fact that it is derived from a sctdéistic in
an implicit way. The computation of S-regression estimmiergenerally difficult. Recent
advances in this direction include Salibian-Barrera ankiaY¢2006).

The MM-regression estimatdyy is defined as any local minimum df: RP — R,

where
f (Bu) = lez( ) (5)

andp; is possibly anothep function. Functionf is minimized with respect t@ for fixed

6. Among the possible local minima which have been found, waosh the one for which
(5) is smallest. In equation (%) is any scale estimator satisfying equation (4). It is common
however to us@s (the minimum value).

The consistency and asymptotic distribution of MM-estiesatvhen the observed data
follow the central model (1) has been studied by Yohai (1987)he case of random covari-
ates, and by Salibian-Barrera (2006) for fixed designs. Sty and asymptotic distribu-
tion of S-estimators has been studied by Rousseeuw and Y0®@4), Davies (1990) and
Salibian-Barrera (2006).

4 ROBUST ESTIMATORS WHICH USE A FLEXIBLE LEVEL OF TRIMMING

In the robust estimators, shown in the previous sectiorhtéakdown point and therefore the
amount of trimming we are willing to tolerate must be fixed mpr The forward search, on
the other hand, in order to avoid this problem, fits subseddeérvations of sizeto the data,

with mg <m<n. Let S pe the subset of size, for which the matrix of regressorsxgm).

Least squares on this subset of observations yields paeamtmateé(m*) ands’(m), the
mean square estimate f onm— p degrees of freedom. Residuals can be calculated for all

observations including those notﬁfm. Then resulting least squares residuals are
&(m") =y —x B(m). (6)

The search moves forward with the augmented SLﬁg&tl) consisting of the observations
with them- 1 smallest absolute valuesgfm®). The estimates of the parameters are based
on only those observations giving the centradesiduals.

To start we takeny = p and search over subsetspbbservations to find the subset, out
of 1,000, that yields the least median of squares (LMS) edtrof3 (Rousseeuw, 1984). Al-
though this initial estimator is ng¢n-consistent (Hawkins and Olive, 2002) our results show
that the properties of the initial estimator are not relévarovided masking is broken. Identi-
cal inferences are obtained using the least trimmed sgeatiesator (LTS) except sometimes
whenm is small andn/p < 5. Random starting subsets also yield indistinguishaldalte



over the last one third of the search. Examples for multatarilata are in Atkinson and Riani
(2007). The forward search, adding, and sometimes delailyggervations provides a bridge
between the initial estimate andn-consistent parameter estimates for the uncontaminated
observations as the sample size goes to infinity.

5 DATA ANALYSIS USING A FIXED VS FLEXIBLE LEVEL OF TRIMMING

The purpose of this section is to compare the output whichesoout from the use of tra-
ditional robust estimators in which we have 1) to choose thd &f p function both for the
location and the scale estimator; 2) to fix a priori the petaga of trimming one is willing to
tolerate; 3) to specify the the number of subsamples whiehvwants to extract; 4) to specify
the number of steps to find the minimum.

Atkinson and Riani (2000), pp. 5-9, give an example of a regjom dataset with 60 ob-
servations on three explanatory variables where there anagked outliers that cannot be
detected using standard analyses. The scatter plot of¢hemsey against the three explana-
tory variables of and the traditional plot of residuals agafitted values and the ggplot of
OLS residuals (not given here for lack of space) do not rqwadicular observations far from
the bulk of the data.

Figure 1 shows the index plots of the scaled MM residualshinleft panel we have
used a preliminang estimate ofc based on a 50% breakdown point and in the MM step
an efficiency of 90%. In the right panel we have used the samknpnary estimate ofy
as before but an efficiency of 95%. As the reader can see, tivesigures produce a very
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Figure 1. Index plots of robust scale residuals obtained uﬁnm using a preliminang-estimate of
scale based on a 50% breakdown point. Left panel: 90% noreffielency; right panel: 95% nominal
efficiency. The horizontal lines correspond to the 99% iilliml and simultaneous bands using the

standard normal.

different output. While the plot of the right (which is simailto the masked index plot of
OLS residuals) highlights the presence of a unit (numbemd8h is on the boundary of a



simultaneous confidence band, the plot on the left (basedsmnadler efficiency) suggests
that there may be 6 atypical units (9, 21 30, 31, 38 47). Mamstjons, however, still remain
unanswered such as whether these 6 units form a group or stfa connection of these
units with unit 43 and what is the effect that these units teaerrthe fitted model. Because
of the way in which models are fitted (either with LS, LTS or LM&, S or MM approach)
we lose information about the effect of individual obseimas on inferences about both
the form and the parameters of the model. In order to undetdtee effect that each unit,
outlier or not, exerts on the fitted model, it is necessarytaot svith a subset of data and
monitor the required diagnostics. In the example abovegiktart with a least squares fit to
4 observations, robustly chosen, we can calculate theualsidor all 60 observations and
next fit to the five observations with smallest squared redg&dun general, given a fit to a
subset of size m, we can order the residuals and take, asstheulxset, then + 1 cases with
smallest squared residuals. This gives a forward searobghrthe data (Atkinson and Riani
2000; Riani, Atkinson and Cerioli, 2009), ordered by clesento the model. We expect that
the last observations to enter the search will be those wameliurthest from the model and
so may cause changes once they are included in the subsedousitiihg. Figure 2 shows
the monitoring of the scaled squared residuals for the 66 wiithe dataset. In this case

Squared scaled residuals

0
10 20 30 40 50 60
Subset size m
Figure2. Monitoring of squared scaled residuals. The outliers haantdrawn with dotted lines, while
the trajectory of the case which in the final step shows tlgekrresidual has been drawn with a solid
line. All the other unimportant trajectories have been sihawfaint grey.

we have initialized the search with LTS, investigating alkpible 60 choose 4 subsets and
taking the one with the smallest sum of the 50% smallest sgur@siduals, although virtually



identical results are obtained starting from differenttstg points. This fascinating plot not
only reveals the presence of six masked outliers but algo tha

1. the six outliers form a cluster, because their trajeetoaire very similar. In other words,
they respond in a similar way to the introduction of unit®ittte subset;

2. the residuals of the six outliers at the end of the searelt@mpletely mixed with those
of the other units, therefore traditional methods basedragiesdeletion diagnostics can-
not detect them;

3. the entry of the six outliers causes a big increase in #jedrory of the residual for unit
43. Indeed this is the unit which in the final step has the ktrgesidual and may be
wrongly considered as an outlier from the traditional plbtesiduals against fitted val-
ues or an index plot of robust residuals which uses a typis# asymptotic efficiency
(see right panel of Figure 1).
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