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ABSTRACT. In this paper we consider regression data possibly contaminated with the presence of
multiple outliers. The goal of this work is to compare the information which can be extracted from the
use of traditional robust estimators of regression which try to combine robustness and efficiency with
those which use a flexible level of trimming and are based on the forward search estimator.

1 INTRODUCTION

Data are an overwhelming feature of modern life. As the amount of data increases so do the
challenges facing the statistician in trying to extract information from ever larger data sets.
We argue that larger data sets are also more complex and require flexible multiple analyses
in order to reveal their structure. Only then all information can be efficiently extracted.

Given that the presence of outliers can have strong effects on the results of statistical mod-
els, it is necessary to use the tools of robust statistics to preliminary detect them. However,
many asymptotic results available in the robustness literature require regularity conditions
that are difficult to verify in practice, or that may not be valid. For example, typical regularity
conditions under which asymptotic properties of robust estimators have been studied include:
symmetric errors for the good part of the data (Simpson and Yohai, 1998); known error scale
(Markatou and Hettmansperger, 1990); or conditions that involve the expected value of the
estimating equations under the unknown distribution of thedata (e.g. Huber, 1981). Salibian-
Barrera and Zamar (2004) found that there is a trade-off between the breakdown point of the
S-estimator (to be described in section 3) and the size of theneighbourhood where uniform
asymptotics hold.

In this paper we give an example where even in the presence of acore population and
some isolated or clustered outliers, the use of traditionalrobust methods based on a prefixed
level of trimming and a predetermined asymptotic level of efficiency can offer a distort view
of the data. The goal of this paper is to compare the information which can be extracted from
the use of traditional robust estimators with those which come out from the use a flexible
level of trimming like that based on the forward search (Riani, Atkinson and Cerioli, 2009;
Atkinson, Riani and Cerioli, 2010).



The paper is structured as follows. In section 2 we introducethe notation. In section 3 we
recall the main robust estimators in regression and explainthe choices which have to be made
to obtain robust estimators which asymptotically try to combine robustness and efficiency. In
section 4 we briefly recall the basic steps of the forward search algorithm. In section 5 we use
a well known dataset which contains 6 masked outliers and compare the information coming
from the different approaches.

2 NOTATION

Consider the usual regression model with random carriers where we observe i.i.d. random
vectors (yi, xT

i ) ∈ ℜp+1, i = 1, . . . ,n, whereyi ∈ ℜ andxi ∈ ℜp satisfy

yi = xT
i β+ ui i = 1, . . . ,n. (1)

ui are random errors independent from the covariates (xi) which have common variance equal
to σ2 andβ ∈ ℜp is the parameter of interest. We are concerned with the case where a certain
proportion of the observations may not follow model (1) above. Given an estimator ofβ, say
β̂, the residuals are defined as

ri(β̂) = yi − xT
i β̂.

3 TRADITIONAL ROBUST ESTIMATORS WHICH USE A FIXED LEVEL OF

TRIMMING

Traditional robust estimators attempt to limit the influence of outliers by replacing in the
estimation ofβ the square of the residuals with a less rapidly increasing loss function or by
a functionρ of the residuals themselves which is bounded. The regression M-estimate of
locationβ (sayβ̂M) is the value that minimizes the following objective function

n

∑
i=1

ρ

(

ri(β̂M)

σ

)

= min. (2)

Perhaps the most popular choice for theρ function in (2) is Tukey’s Biweight function

ρ(x) =

{

x2

2 − x4

2c2 +
x6

6c4 if |x| ≤ c
c2

6 if |x|> c,
(3)

wherec > 0 is a tuning constant which is linked to the breakdown point of the estimator ofβ.
In equation (2) it is assumed thatσ is known. However, when this condition is not fulfilled, it
is necessary to use an auxiliary robust scale estimate (σ̂) to makeβ̂M scale equivariant.

An M-estimator of scalêσM is defined as the solution to the following equation

1
n

n

∑
i=1

ρ1

(

ri

σ̂M

)

= K, (4)



whereri = ri(β̂M), σ̂M = σ̂(r1(β̂M), . . . ,rn(β̂M)) andK is a constant which is linked to the
breakdown point of the scale estimator. It is worthwhile to notice that in equation (4) we have
used the symbolρ1 because theρ function which is used to obtain the scale estimator is not
necessarily the same which is used in (2).

If we take the minimum value of̂σM which satisfies equation (4), we obtain the so called
S-estimate of scale (σ̂S) and the associated estimate of the vector of regression coefficients
(β̂S). The wordS estimator comes from the fact that it is derived from a scale statistic in
an implicit way. The computation of S-regression estimators is generally difficult. Recent
advances in this direction include Salibian-Barrera and Yohai (2006).

The MM-regression estimator̂βMM is defined as any local minimum off : Rp → R+,
where

f (β̂MM) =
1
n

n

∑
i=1

ρ2

( ri

σ̂

)

(5)

andρ2 is possibly anotherρ function. Functionf is minimized with respect toβ for fixed
σ̂. Among the possible local minima which have been found, we choose the one for which
(5) is smallest. In equation (5)̂σ is any scale estimator satisfying equation (4). It is common
however to usêσS (the minimum value).

The consistency and asymptotic distribution of MM-estimates when the observed data
follow the central model (1) has been studied by Yohai (1987)for the case of random covari-
ates, and by Salibian-Barrera (2006) for fixed designs. Consistency and asymptotic distribu-
tion of S-estimators has been studied by Rousseeuw and Yohai(1984), Davies (1990) and
Salibian-Barrera (2006).

4 ROBUST ESTIMATORS WHICH USE A FLEXIBLE LEVEL OF TRIMMING

In the robust estimators, shown in the previous section, thebreakdown point and therefore the
amount of trimming we are willing to tolerate must be fixed a priori. The forward search, on
the other hand, in order to avoid this problem, fits subsets ofobservations of sizem to the data,

with m0 ≤m≤ n. Let S(m)
∗ be the subset of sizem, for which the matrix of regressors isX(m∗).

Least squares on this subset of observations yields parameter estimateŝβ(m∗) ands2(m∗), the
mean square estimate ofσ2 on m− p degrees of freedom. Residuals can be calculated for all

observations including those not inS(m)
∗ . Then resulting least squares residuals are

ei(m
∗) = yi − xT

i β̂(m∗). (6)

The search moves forward with the augmented subsetS(m+1)
∗ consisting of the observations

with them+1 smallest absolute values ofei(m∗). The estimates of the parameters are based
on only those observations giving the centralm residuals.

To start we takem0 = p and search over subsets ofp observations to find the subset, out
of 1,000, that yields the least median of squares (LMS) estimate ofβ (Rousseeuw, 1984). Al-
though this initial estimator is not

√
n-consistent (Hawkins and Olive, 2002) our results show

that the properties of the initial estimator are not relevant, provided masking is broken. Identi-
cal inferences are obtained using the least trimmed squaresestimator (LTS) except sometimes
whenm is small andn/p < 5. Random starting subsets also yield indistinguishable results



over the last one third of the search. Examples for multivariate data are in Atkinson and Riani
(2007). The forward search, adding, and sometimes deleting, observations provides a bridge
between the initial estimate and

√
n-consistent parameter estimates for the uncontaminated

observations as the sample size goes to infinity.

5 DATA ANALYSIS USING A FIXED VS FLEXIBLE LEVEL OF TRIMMING

The purpose of this section is to compare the output which comes out from the use of tra-
ditional robust estimators in which we have 1) to choose the kind of ρ function both for the
location and the scale estimator; 2) to fix a priori the percentage of trimming one is willing to
tolerate; 3) to specify the the number of subsamples which one wants to extract; 4) to specify
the number of steps to find the minimum.

Atkinson and Riani (2000), pp. 5-9, give an example of a regression dataset with 60 ob-
servations on three explanatory variables where there are 6masked outliers that cannot be
detected using standard analyses. The scatter plot of the responsey against the three explana-
tory variables of and the traditional plot of residuals against fitted values and the qqplot of
OLS residuals (not given here for lack of space) do not revealparticular observations far from
the bulk of the data.

Figure 1 shows the index plots of the scaled MM residuals. In the left panel we have
used a preliminaryS estimate ofσ based on a 50% breakdown point and in the MM step
an efficiency of 90%. In the right panel we have used the same preliminary estimate ofσ
as before but an efficiency of 95%. As the reader can see, thesetwo figures produce a very
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Figure 1. Index plots of robust scale residuals obtained usingβ̂MM using a preliminaryS-estimate of
scale based on a 50% breakdown point. Left panel: 90% nominalefficiency; right panel: 95% nominal
efficiency. The horizontal lines correspond to the 99% individual and simultaneous bands using the
standard normal.

different output. While the plot of the right (which is similar to the masked index plot of
OLS residuals) highlights the presence of a unit (number 43)which is on the boundary of a



simultaneous confidence band, the plot on the left (based on asmaller efficiency) suggests
that there may be 6 atypical units (9, 21 30, 31, 38 47). Many questions, however, still remain
unanswered such as whether these 6 units form a group or what is the connection of these
units with unit 43 and what is the effect that these units exert on the fitted model. Because
of the way in which models are fitted (either with LS, LTS or LMS, M, S or MM approach)
we lose information about the effect of individual observations on inferences about both
the form and the parameters of the model. In order to understand the effect that each unit,
outlier or not, exerts on the fitted model, it is necessary to start with a subset of data and
monitor the required diagnostics. In the example above, if we start with a least squares fit to
4 observations, robustly chosen, we can calculate the residuals for all 60 observations and
next fit to the five observations with smallest squared residuals. In general, given a fit to a
subset of size m, we can order the residuals and take, as the next subset, them + 1 cases with
smallest squared residuals. This gives a forward search through the data (Atkinson and Riani
2000; Riani, Atkinson and Cerioli, 2009), ordered by closeness to the model. We expect that
the last observations to enter the search will be those whichare furthest from the model and
so may cause changes once they are included in the subset usedfor fitting. Figure 2 shows
the monitoring of the scaled squared residuals for the 60 units of the dataset. In this case
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Figure 2. Monitoring of squared scaled residuals. The outliers have been drawn with dotted lines, while
the trajectory of the case which in the final step shows the largest residual has been drawn with a solid
line. All the other unimportant trajectories have been shown in faint grey.

we have initialized the search with LTS, investigating all possible 60 choose 4 subsets and
taking the one with the smallest sum of the 50% smallest squared residuals, although virtually



identical results are obtained starting from different starting points. This fascinating plot not
only reveals the presence of six masked outliers but also that

1. the six outliers form a cluster, because their trajectories are very similar. In other words,
they respond in a similar way to the introduction of units into the subset;

2. the residuals of the six outliers at the end of the search are completely mixed with those
of the other units, therefore traditional methods based on single deletion diagnostics can-
not detect them;

3. the entry of the six outliers causes a big increase in the trajectory of the residual for unit
43. Indeed this is the unit which in the final step has the largest residual and may be
wrongly considered as an outlier from the traditional plot of residuals against fitted val-
ues or an index plot of robust residuals which uses a typical 95% asymptotic efficiency
(see right panel of Figure 1).
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