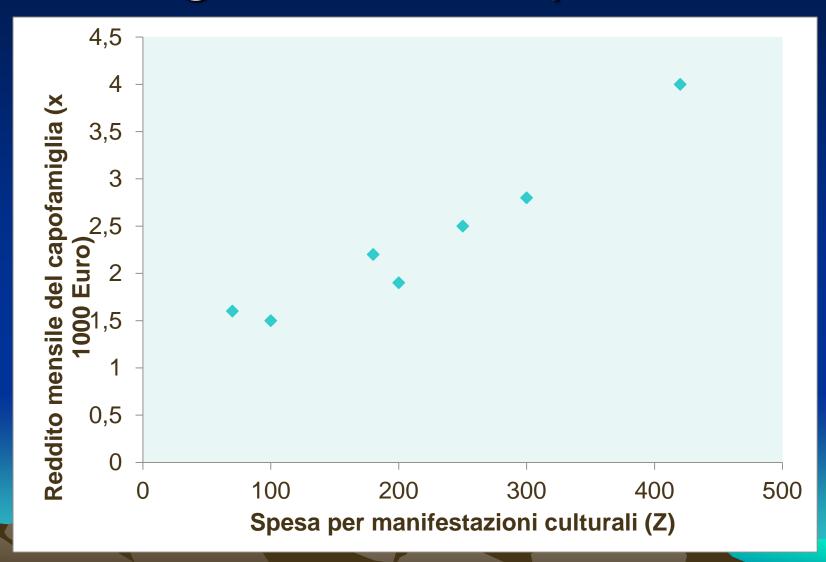
Soluzione esercizi seconda settimana

Es. 7 famiglie

	Spesa per manifestazio ni culturali (Z)	Reddito mensile del capofamiglia (x 1000 Euro) (Y)
Α	200	1,9
В	420	4,0
С	250	2,5
D	70	1,6
Е	180	2,2
F	300	2,8
G	100	1,5

- Costruire il diagramma di dispersione
- Confrontare la variabilità di Z con quella di Y (utilizzando l'analisi robusta e non robusta)

Diagramma di dispersione



Confronto della variabilità

Analisi non robusta: utilizzare CV e non le varianze

$$CV = \frac{\sigma}{M} \cdot 100$$

- VAR(Z) = 12306,122
- VAR(Y) = 0.637
- M(Z) = 217,143 M(Y)=2,357
- $CV(Z) = (12306,122)^{\frac{1}{2}} / 217,143 = 0,511$
- $CV(Y) = (0.637)^{1/2} / 2.357 = 0.339$

Confronto della variabilità

Analisi robusta: utilizzare MAD relativi

•
$$Me(Z) = 200$$
 $Me(Y)=2,2$

•
$$MAD(Z) = 100$$
 $MAD(Y)=0,6$

•
$$MAD'(Z) = 0.5$$
 $MAD'(Y) = 0.27$

 La spesa per manifestazioni culturali è più variabile del reddito mensile

ESERCIZIO RIASSUNTIVO

Nella seguente tabella è riportata la distribuzione dei dipendenti di una grande azienda in base alla retribuzione lorda mensile:

	Numero di dipendenti	
Retribuzioni		
1000 – 1200	30	
1200 – 1500	130	
1500 – 2000	150	
2000 – 2500	50	
2500 – 3500	30	
3500 - 5000	20	

- I) Si calcoli la media e la mediana delle retribuzioni e le si commentino.
- II) Si calcoli lo scostamento quadratico medio e il MAD delle retribuzioni e si commenti il significato dei risultati ottenuti.
- III) Si dica, motivando la risposta, quale trasformazione subirebbero la media, la mediana, lo scostamento quadratico medio e il MAD delle retribuzioni, calcolati ai punti precedenti, se:
 - a)tutte le retribuzioni fossero aumentate di 50 euro,
 - b)tutte le retribuzioni fossero incrementate del 7%
 - c)tutte le retribuzioni fossero incrementate del 2% e, dopo questo aumento, aumentate di 100 euro .
- IV) Si rappresenti graficamente la suddetta distribuzione e si dica quali informazioni si possono ricavare e si calcoli la moda.
- V) Si calcoli l'indice di asimmetria di Fisher e lo si commenti

Retribuzioni	n _i	f _i	F(x)	x _i - Me
1000 – 1200 (1100)	30	0,073	0,073	550
1200 – 1500 (1350)	130	0,317	0,390	300
1500 – 2000 (1750)	150	0,366	0,756	100
2000 – 2500 (2250)	50	0,122	0,878	600
2500 – 3500 (3000)	30	0,073	0,951	1350
3500 – 5000 (4250)	20	0,049	1	2600

$$M = (1100-30 + ... + 4250-20) / 410 = 1850$$

$$Me = 1500 + \frac{500}{0,366}(0,5-0,39) = 1650$$

Scostamento quadratico medio:

$$\sigma = \sqrt{\frac{(1100 - 1850)^2 30 + \dots + (4250 - 1850)^2 20}{410}} = 722,04$$

Retribuzioni	f _i	x _i - Me
1000 – 1200 (1100)	0,073	550
1200 – 1500 (1350)	0,317	300
1500 – 2000 (1750)	0,366	100
2000 – 2500 (2250)	0,122	600
2500 – 3500 (3000)	0,073	1350
3500 – 5000 (4250)	0,049	2600

Me = 1650

x _i – Me ordinati	f _i	F(x)
100	0,366	0,366
300	0,317	0,683
550	0,073	0,756
600	0,122	0,878
1350	0,073	0,951
2600	0,049	1

MAD = 300

$$y_i = a + b \cdot x_i$$
 M(X)= 1850 Me(X)=1650 $\sigma(X)$ =722,04 MAD(X)=300

$$M(Y)=a+b\cdot M(X)$$
 $Me(Y)=a+b\cdot Me(X)$

$$\sigma(Y) = b \cdot \sigma(X)$$
 MAD $(Y) = b \cdot MAD(X)$

a)tutte le retribuzioni fossero aumentate di 50 euro,

$$M = 1850 + 50 = 1900$$
 $Me = 1650 + 50 = 1700$ $\sigma = 722,04$ $MAD = 300$

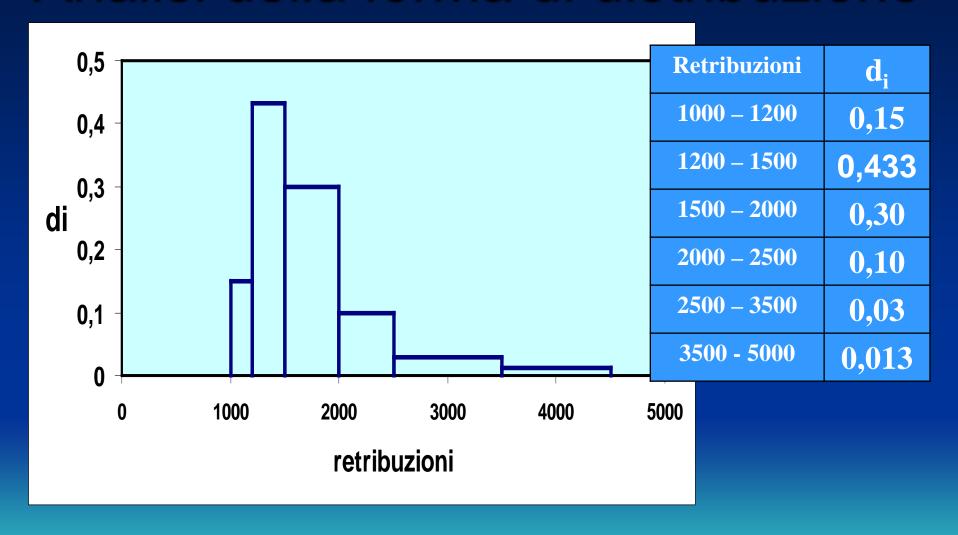
b) tutte le retribuzioni fossero incrementate del 7%

$$M = 1850 \cdot 1,07 = 1979,5$$
 $Me = 1650 \cdot 1,07 = 1765,5$ $\sigma = 722,04 \cdot 1,07 = 772,58$ $MAD = 300 \cdot 1,07 = 321$

c) tutte le retribuzioni fossero incrementate del 2% e, dopo questo aumento, aumentate di 100 euro.

M =
$$1850 \cdot 1,02 + 100 = 1987$$
 Me = $1650 \cdot 1,02 + 100 = 1783$ $\sigma = 722,04 \cdot 1,02 = 736,48$ MAD = $300 \cdot 1,02 = 306$

Analisi della forma di distribuzione



Soluzione: indice di asimmetria di Fisher

Retribuzioni	f _i	$(x_i - M)^3 f_i$
1000 – 1200 (1100)	0,073	-30.868.902,44
1200 – 1500 (1350)	0,317	-39.634.146,34
1500 – 2000 (1750)	0,366	-365.853,6585
2000 – 2500 (2250)	0,122	7.804.878,049
2500 – 3500 (3000)	0,073	111.283.536,6
3500 – 5000 (4250)	0,049	674.341.463,4
		722.560.975,6

M=1850

$$\gamma(\mathbf{X}) = \frac{\sum_{i=1}^{r} (x_i - M(\mathbf{X}))^3 f_i}{[\sigma(\mathbf{X})]^3} = \frac{722.560.975,6}{722,04^3} = 1,9195$$

asimmetria positiva

Esercizio: 4 ipermercati. Sono riportati il fronte espositivo (in metri) relativo ai detergenti per la casa (X) ed il numero di referenze (Y)

Ipermercato	X	Y
A	48	178
В	70	222
C	80	192
D	70	159

Si determini il fronte espositivo Z per referenza di ciascun supermercato

Spiegando il significato dei simboli utilizzati, si scrivano le espressioni della media aritmetica e dello scostamento quadratico medio del fronte espositivo per referenza e si effettuino i relativi calcoli

Calcolo del fronte espositivo per referenza (Z)

Ipermercato	X	Y Z=X/Y
A	48	178 0,27
В	70	222 0,32
C	80	192 0,42
D	70	159 0,44

Scrivere l'espressione della media aritmetica

Media aritmetica del fronte espositivo per referenza (z)

$$z_i = \frac{x_i}{y_i}$$

$$M(z) = \frac{\sum_{i=1}^{r} z_i w_i}{\sum_{i=1}^{r} w_i}$$

Come variabile peso si utilizza il denominatore del rapporto (y numero di referenze)

$$M(z) = \frac{\sum_{i=1}^{r} (x_i / y_i) y_i}{\sum_{i=1}^{r} y_i} = \frac{\sum_{i=1}^{r} x_i}{\sum_{i=1}^{r} y_i}$$

Espressione della media del fronte espositivo per referenza

Ipermercato

X

Y

Z=X/Y

A

48

178

0,27

В

70

222

0,32

80

192

0,42

70

159

0,44

$$M(Z) = \frac{\sum_{i=1}^{4} z_i y_i}{\sum_{i=1}^{4} y_i} = \frac{\sum_{i=1}^{4} x_i}{\sum_{i=1}^{4} y_i}$$

Calcolo della media del fronte espositivo per referenza

Ipermercato	X	Y	Z=X/Y
A	48	178	
В	70	222	0,32
C	80	192	0,42
D	70	159	0,44

$$M(Z) = \frac{\sum_{i=1}^{4} z_i y_i}{\sum_{i=1}^{4} y_i} = \frac{\sum_{i=1}^{4} x_i}{\sum_{i=1}^{4} y_i} = \frac{48 + 70 + 80 + 70}{178 + 222 + 192 + 159} = 0.357$$

Espressione dello scostamento quadratico medio del fronte espositivo per referenza

Ipermercato	X	Y Z=X/Y
A	48	178 0,27
В	70	222 0,32
C	80	192 0,42
D	70	159 0,44

$$\sigma(Z) = \sqrt{\frac{\sum_{i=1}^{2} [z_i - M(Z)]^2 y_i}{\sum_{i=1}^{4} y_i}}$$

Calcolo dello scostamento quadratico medio del fronte espositivo per referenza

Ipermercato

A

B

C

$$\sigma(Z) = \sqrt{\frac{\sum_{i=1}^{4} [z_i - M(Z)]^2 y_i}{\sum_{i=1}^{4} y_i}} = \frac{\sum_{i=1}^{4} [z_i - M(Z)]^2 y_i}{\sum_{i=1}^{4} y_i}$$

X

48

70

80

70

Y

178 0,27

Z=X/Y

222 0,32

192 0,42

159 0,44

$$\sigma(Z) = \sqrt{\frac{(0.27 - 0.357)^2 178 + \dots + (0.44 - 0.357)^2 159}{751}} = 0.069$$

Esercizio: Rendimenti, in quintali per ettaro, d'una certa varietà di frumento

Rendimenti, in quintali per ettaro, d'una certa varietà di frumento, per 100 appezzamenti di terreno

Rendimenti	n. appezzamenti
54-58	16
58-62	23
62-66	25
66-70	21
70-74	15
	100

- Quartili?
- Significato del terzo quartile
- Box-plot
- Si illustrino le informazioni traibili dalla suddetta rappresentazione

Soluzione: calcolo quartili

Rendimenti	n. appezzamenti	f _i	F;
54-58	16	0,16	0,16
58-62	23	0,23	0,39
62-66	25	0,25	0,64
66-70	21	0,21	0,85
70-74	15	0,15	1
	100	1	

$$x_{0,25} = 58 + \frac{4}{0,23}(0,25 - 0,16) = 59,56$$

$$x_{0,50} = 62 + \frac{4}{0,25}(0,5-0,39) = 63,76$$

$$x_{0,75} = 66 + \frac{4}{0.21}(0,75 - 0,64) = 68,09$$

Soluzione: costruzione del boxplot

 Dopo aver trovato i quartili occorre calcolare i punti di troncamento

Boxplot

- $PT_{inf} = 59,56 1,5(68,09 59,56) = 46,765$
- Dato che $46,765 < x_{min} \rightarrow PT_{inf} = x_{min} = 54$
- $PT_{sup} = 68,09 + 1,5(68,09-59,56)=80,885$
- Dato che 80,885 > $x_{max} \rightarrow PT_{sup} = x_{max} = 74$



ESERCIZIO: Var. % rispetto all'anno precedente dei prezzi di due beni

Anno	Bene A	Bene B
1997	1	
1998	+2,9%	-1,0%
1999	+3,5%	+3,6%
2000	+1,8%	+4,5%
2001	-0,6%	+2,5%

Calcolare:

- N.I. dei prezzi con base 1997=100
- N.I. composti dei prezzi con base 1997=100
- peso A = 20%; peso B = 80%
- Variazione complessiva dal 1997 al 2001 e tasso medio annuo dei N.I. composti

Ricostruzione NI a base mobile = 100 + var. %

Anno	Var % Bene A	Var % Bene B	N.I base mobile Bene A	N.I base mobile Bene B
1997	1	1	1	_
1998	+2,9%	-1,0%	102,9	99,0
1999	+3,5%	+3,6%	103,5	103,6
2000	+1,8%	+4,5%	101,8	104,5
2001	-0,6%	+2,5%	99,4	102,5

Ricostruzione NI a base fissa = relazione tra N.I. a base fissa e base mobile

Anno	N.I base mobile Bene A	NI base mobile N.I Bene B	NI base fissa Bene A	NI base fissa Bene B
1997	-	_	100	100
1998	102,9	99,0	102,9	99,0
1999	103,5	103,6	106,5	102,6
2000	101,8	104,5	108,4	107,2
2001	99,4	102,5	107,8	109,9

Interpretazione

N.I. composti (base 1997) ⇒ media ponderata N.I. semplici a base fissa:

Anno	NI base fissa Bene A	NI base fissa Bene B	NI composti
1997	100	100	100
1998	102,9	99,0	102,9*0,2+99,0*0,8=99,8
1999	106,5	102,6	106,5*0,2+102,6*0,8=103,4
2000	108,4	107,2	107,4
2001	107,8	109,9	109,5

Interpretazione

Variazione complessiva N.I. composti (base 1997)

Anno	NI composti
1997	100
1998	99,8
1999	103,4
2000	107,4
2001	109,5

Tasso medio annuo di variazione:

$$\sqrt[4]{1,095} - 1 = 0,023$$

 \Rightarrow + 2,3%

CORRELAZIONE FRA DUE S.S.

- Esempio: X = numero di extracomunitari iscritti al collocamento, Y = numero di discount
- Calcolare e r_{XY} tra le variabili originarie, i NI a base fissa, le variazioni percentuali a base fissa, i NI a base mobile, le variazioni percentuali a base mobile
 Correlazione spuria ⇒ relazione tra i livelli

Anni	X	Y
1993	72.644	600
1994	85.993	1.300
1995	96.287	1.930
1996	136.942	2.328
1997	140.100	2.523

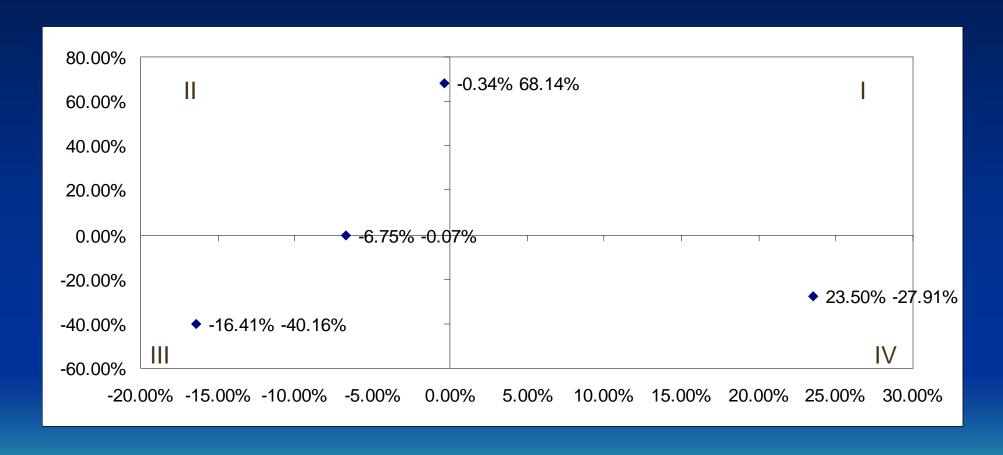
$$r_{xy} = \frac{COV(X,Y)}{\sigma_x \cdot \sigma_y} = \frac{17.977.023,36}{(27.300,88 \cdot 705,42)} = 0,933$$

NI base mobile X (numero di extracomunitari) e Y (numero di discount

Anni	n. i. base mobile	n. i. base mobile	Var % X	Var % Y	Scost media X	Scost media Y
1993	-	-				
1994	118,38	216,67	18,38	116,67	-0,34	68,14
1995	111,97	148,46	11,97	48,46	-6,75	-0,07
1996	142,22	120,62	42,22	20,62	23,50	-27,91
1997	102,31	108,38	2,31	8,38	-16,41	-40,16
Media	118,72	148,53	18,72	48,53	0,00	0,00
Var	0,0217	0,1758	0,0217	0,1758	Cov	(Nix,Nly)=- 0,000496

 r_{xy} (tra n. i. a base mobile) =-0,000496/(0,0217*0,1758)^{1/2} = -0,008

Scatter sugli scostamenti NI base mobile o var. percentuali



Osservazioni finali

- Non esiste relazione lineare tra le variazioni annue di X e Y
- Si ottiene $r_{xy} = -0,008$ anche effettuando il calcolo sulle *variazioni* % rispetto all'anno precedente (proprietà di invarianza per trasformazioni lineari crescenti)

X = PREZZI (in euro) Y = QUANTITA' VENDUTE (in n. di pezzi)

 Calcolare rxy sui dati originali, sui NI a base fissa e sulle variazioni percentuali. Commentare i risultati

Anni	X	Y	v(X) %	v(Y)%
1997	1,50	200	•	-
1998	1,68	208	+12	+4
1999	1,78	229	+6	+10,1
2000	1,96	243	+10,1	+6,1
2001	2,25	245	+14,8	+0,8
2002	2,43	265	+8,0	+8,2
2003	2,60	288	+7,0	+8,7

Coefficiente di correlazione

- Calcolato sui livelli
- $r_{xy} = 0.97$

- Calcolato sulle variazioni percentuali
- $r_{v(x)v(y)} = -0.998$

Lucidi regressione

ESEMPIO (7 supermercati) r_{xy} =0,96

	N. dipendenti (X)	Fatturato in milioni di € (Y)
Α	10	1,9
В	18	3,1
C	20	3,2
D	8	1,5
Е	30	6,2
F	12	2,8
G	14	2,3
Me	16	3
die	N	

Calcolo di a e b

	Xi	y _i	x _i ²	y _i ²	$X_i Y_i$
Α	10	1,9	100	3,61	19
В	18	3,1	324	9,61	55,8
C	20	3,2	400	10,24	64
D	8	1,5	•••	•••	•••
Е	30	6,2	•••	•••	•••
F	12	2,8	•••	•••	•••
G	14	2,3	•••	•••	•••
Tot.	112	21	2128	77,28	402,6

$$a = \frac{\sum y_{i} \sum x_{i}^{2} - \sum x_{i} \sum x_{i} y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a = \frac{21 \cdot 2.128 - 112 \cdot 402,6}{7 \cdot 2.128 - 112^2} = -\frac{403,2}{2.352} = -0,17$$

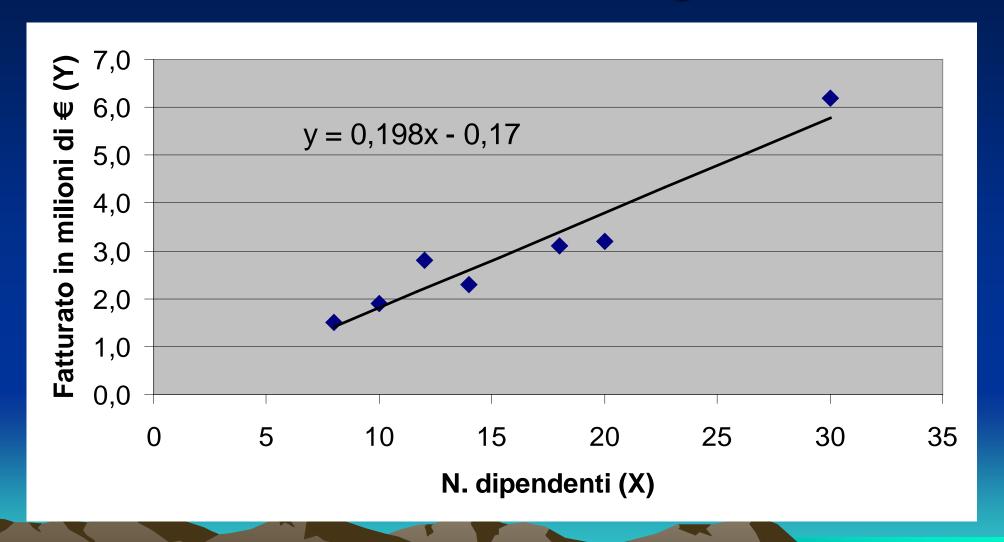
Calcolo di a e b

	X _i	y _i	x _i ²	y _i ²	$x_i y_i$
Α	10	1,9	100	3,61	19
В	18	3,1	324	9,61	55,8
C	20	3,2	400	10,24	64
D	8	1,5	•••	•••	•••
Е	30	6,2	•••	•••	•••
F	12	2,8	•••	•••	•••
G	14	2,3	•••	•••	•••
Tot.	112	21	2128	77,28	402,6

$$b = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$b = \frac{7 \cdot 402,6 - 112 \cdot 21}{7 \cdot 2,128 - 112^2} = \frac{466,2}{2,352} = 0,198$$

Scatter con retta di regressione



Interpretazione dei parametri ESEMPIO (7 supermercati)

- $a = -0.17 \rightarrow fatturato teorico quando N. di dipendenti = 0$
- b = 0,198 → incremento medio nel fatturato quando il numero di dipendenti aumenta di 1 unità

Calcolo dei valori teorici e dei residui

 $y_i = -0.17 + 0.198x_i$

	X _i	y _i	Valori teorici	Resi dui	x _i ×residuo _i
Α	10	1,9	-0,17+0,198*10=1,81	0,09	0,89
В	18	3,1	-0,17+0,198*18=3,40	-0,30	-5,34
С	20	3,2	-0,17+0,198*20= 3,79	-0,59	-11,86
D	8	1,5	1,41	0,09	0,69
Е	30	6,2	5,78	0,43	12,75
F	12	2,8	2,21	0,59	7,11
G	14	2,3	2,60	-0,30	-4,25
То	112	21	21	0	0
t.		$\sum_{i=1}^{n}$	$y_i = \sum_{i=1}^n \hat{y}_i$	$e_i = 0$	$\sum_{i=1}^{n} x_i e_i = 0$

Modi alternativi di esprimere b (p. 229)

$$b = \frac{COV(X,Y)}{VAR(X)} = r_{xy} \frac{\sigma_y}{\sigma_x}$$

Dimostrazione

$$b = \frac{COV(\mathbf{X}, \mathbf{Y})}{\sqrt{VAR(\mathbf{X})VAR(\mathbf{Y})}} \frac{\sigma(\mathbf{Y})}{\sigma(\mathbf{X})}$$

ESEMPIO (7 supermercati):

$$r_{xy} = 0.961$$
 $\sigma_X = 6.928$ $\sigma_y = 1.428$

$$\sigma_{x} = 6,928$$

$$\sigma_y=$$
 1,428

$$b = \frac{COV(X,Y)}{VAR(X)} = r_{xy} \frac{\sigma_y}{\sigma_x}$$
 $b = 0.961 \cdot \frac{1,428}{6,928} = 0.198$

$$b = 0.961 \cdot \frac{1.428}{6.928} = 0.198$$

$$M_y = 3$$
 $M_x = 16$

$$M_y = 3$$
 $M_x = 16$ $a = M_y - bM_x$

$$a = 3 - 0,198 \cdot 16 = -0,17$$

BONTA' DI ADATTAMENTO

• Occorre analizzare i residui $e_i = (y_i - \hat{y}_i)$

DEVIANZA RESIDUA

$$DEV(E) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

- L'adattamento è buono quando DEV(E) è "piccola"
- Problemi:
- DEV(E) cresce all'aumentare del numero di osservazioni (n)
- DEV(E) dipende dall'unità di misura e dall'ordine di grandezza di Y

In qualsiasi modello di regressione con o senza intercetta è valida la relazione che segue

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} \hat{y}_i^2 + \sum_{i=1}^{n} e_i^2$$

•Questa relazione sfrutta la terza proprietà delle stime dei minimi quadrati (vincolo della derivata parziale rispetto a b posta uguale a 0)

$$\sum_{i=1}^{n} x_i (y_i - \hat{y}_i) = 0$$

Esempio supermercati (continua)

 $y_i = -0.17 + 0.198x_i$

	X _i	y _i	Valori teorici	Resid ui	X _i ×residuo _i	y _i ²	(Valori teorici) ²	residui ²
A	10	1,9	1,81	0,09	0,89	3.61	3.279	0.008
В	18	3,1	3,40	-0,30	-5,34	9.61	11.536	0.088
С	20	3,2	3,79	-0,59	-11,86	10.24	14.386	0.351
D	8	1,5	1,41	0,09	0,69	2.25	2.000	0.007
Е	30	6,2	5,78	0,43	12,75	38.44	33.351	0.181
F	12	2,8	2,21	0,59	7,11	7.84	4.871	0.351
G	14	2,3	2,60	-0,30	-4,25	5.29	6.779	0.092
Tot.	112	21	21	0	0	77.28	76.201	1.079

$$\sum_{i=1}^{n} y_i^2 = \sum_{i=1}^{n} \hat{y}_i^2 + \sum_{i=1}^{n} e_i^2$$

BONTA' DI ADATTAMENTO

• Retta di regressione: $\hat{y}_i = a + bx_i$

$$\hat{y}_i = a + bx_i$$

DEVIANZA TOTALE

$$DEV(Y) = \sum_{i=1}^{n} (y_i - M_y)^2$$

DEVIANZA DI REGRESSIONE

DEVIANZA RESIDUA

$$DEV(E) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

$$DEV(\hat{Y}) = \sum_{i=1}^{n} (\hat{y}_i - M_y)^2$$

Esempio 7 supermercati (continua)

 $\hat{y}_1 = -0.17 + 0.198*10$ Calcolo di R² (δ)

	Xi	Уi	\hat{y}_i	e_i^2	$(\hat{y}_i - M_y)^2$
A	10	1,9	1,81	0.008	1,416
В	18	3,1	3,394	0.088	0,155
С	20	3,2	3,79	0.351	0,624
D	8	1,5	1,414	0.007	•••
Е	30	6,2	5,77	0.181	•••
F	12	2,8	2,206	0.351	•••
G	14	2,3	2,602	0.092	•••
Tot.	112	21	21	1,079	13,201

• $DEV(Y) = 7 \cdot (1,428)^2$ = 14,28 $M_y = 3$

 $Dev_{TOT} = Dev_{REGR} + Dev_{RES}$ 14,28 = 13,201 + 1,079

$$\delta = \frac{13,201}{14,28} = 1 - \frac{1,079}{14,28} = 0,924$$

